
ARMY RESEARCH LABORATORY

The Distributed Interactive Simulation
(DIS) Lethality Communication Server

Volume II: User and Programmer's Manual

Geoffrey C. Sauerborn

ARL-TR-1775 FEBRUARY 1999

19990325 063

Approved for public release; distribution is unlimited.

DTI0 QUALK* IKSPECTBD 1

IRIX™ and Open GL™ are trademarks of of Silicon Graphics, Inc.

Linux® is a registered trademark of Linus Torvalds.

POSIX® is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

Silicon Graphics® and IRIS® are registered trademarks of Silicon Graphics, Inc.

Sun Solaris® is a registered trademark of Sun Microsystems Compter Company.

VR Link® is a registered trademark of MäK.

UNIX™ is a trademark of Bell Laboratories.

Windows NT® is a registered trademark of Microsoft Corporation.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of
the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Abstract

Volume 1 presented the distributed interactive simulation lethality
communication server, a client-server approach to handling battle simulation
lethality. Although Volume 1 explained the approach and its benefits and
limitations, it presented no information about how to set up, run, or modify
the server. In this volume, these vital (yet sometimes tedious) details are
provided.

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

1. PURPOSE 1

2. INTRODUCTION , 1

3. QUICK START INSTALLATION 1

3.1 Unpacking and Installing 2
3.2 Compiling 2
3.3 Test Programs 2

4. THE SERVER'S ARCHITECTURE 4

4.1 Server Application—ARL DIS Manager 7
4.2 Server Application—The DIS Server 7
4.3 Server Application—The DIS Monitor 8

5. INITIALIZING THE SERVER 8

5.1 Server Initialization Files 8

6. COMMUNICATING WITH THE SERVER 10

7. EXPANDING THE SERVER H

7.1 Adding a New Vulnerability Taxonomy Description 11
7.2 Adding aNew (look-up) Table Format 26
7.3 Adding Remote Access for a New Vulnerability Methodology 33

8. SUMMARY 48

REFERENCES 51

APPENDICES

A. Initial Compilation's Sample Output 53
B. Manual "Man" Pages 59

DISTRIBUTION LIST 169

REPORT DOCUMENTATION PAGE 173

in

INTENTIONALLY LEFT BLANK

IV

LIST OF FIGURES

Figure Page

1. DIS Lethality Server Architecture 5

2. A Modified View of the Server Architecture 11

3. vl_meth.h Code Changes—Adding a New Vulnerability Method 16

4. V/L API: Lethality Data Delivery, Parameters, and Reader Layers 17

5. Adding an API for a New Vulnerability Method vl_binary_ArlDIS_ProbAll_NoNet() 24

6. "tbl_fmts.h" Used for Data V/L Data Reading and Initialization 30

7. Example of Records for a Meta Data File 31

8. Prototypes of Data Source Initialization and Reader Functions (in "tbl_rdrs.h").. 32

9. Modifications of DIS Monitor to Listen for New PDU Types 36

10. Removing Collision From DIS Manager's PDU "Filtering" 36

11. Defining Client-Server Protocol (adding tokens to vls_toke.h) 39

12. Enabling vlserver to Parse a New Query Type (service_query_to_db()) 44

13. Sample ASCII Query String (sent to the vlserver) 44

14. Change (in disjnon) to Accept New Queries 45

15. A Function to Process Collision Damage Queries (using BINARY method) 47

INTENTIONALLY LEFT BLANK

VI

LIST OF TABLES

Table Page

1. MFK "Probability" Space 9

2. Application's Interface to the Server (VLSclient) 11

3. Some Result Delivery APIs (for the MFK methodology) 18

4. Newly Defined Result Delivery APIs (for the BINARY methodology) 19

Vll

INTENTIONALLY LEFT BLANK

vni

THE DISTRIBUTED INTERACTIVE SIMULATION (DIS)
LETHALITY COMMUNICATION SERVER

VOLUME II: USER AND PROGRAMMER'S MANUAL

1. PURPOSE

This report is a user and programmer's manual for the distributed interactive simulation

(DIS) lethality communication server (the server). The report can be used to learn how to
initialize, operate, or modify the server. Instructions for modifying the server are written for an
expert level audience; therefore, only experienced "C" programmers should attempt this.

2. INTRODUCTION

The ARL DIS lethality communication server is a combination of application program
interface (API) libraries and utility programs that make it possible to allow multiple applications
to access a single lethality data source. The server is designed for the DIS environment. As such,
the server returns lethality results as described by (the DIS) Institute of Electrical and Electronics
Engineers (IEEE) Standard 1278.1 [1,2]. Furthermore, the server expects input in DIS standard
protocol data unit (PDU) format (although the equivalent input may be greatly condensed at more
abstracted layers within the APIs). The DIS lethality server has demonstrated a data latency of
less than 1/100th of a second and thus may be useful for a wide variety of applications, including
real time [3,4]. This project was jointly sponsored by the Army Modeling & Simulation Office
(as a 1997 Army modeling improvement program project [AMIP]) and by the U.S. Army

Research Laboratory (ARL).

3. QUICK START INSTALLATION

The server is designed to run in the UNIX™ environment but might be portable to most
POSIX® systems with an American National Standards Institute (ANSI) C compiler and the
"csh" or "tcsh" command line interpreter shell.1 This includes most UNIX™-like systems and
Windows™ NT®. So far, the server has only been tested under IRIX™, Linux®, and Sun

Solaris® operating systems.

^he server requires an environmental variable to be set (VLS_HOME). This is best accomplished by running the
server or client application under the "csh" or "tcsh" command line interfaces.

3.1 Unpacking and Installing

The server comes packaged in a "tar" format archive. This archive needs to be unpacked in

a convenient location accessible by server users, to be used by those who actually wish to run the

server and by those who merely wish to have access to its libraries to create client applications.

In the following examples, we assume that the location will be /usr/local/DIS/Lserver, but the

actual location chosen is not significant.

Change to the directory where you wish to install the server and extract the tar archive

there. For example, suppose the tar archive is in the file /home/mystuff/lserver_vl23.tar. To

install the server in /usr/local/DIS/Lserver,

mkdir /usr/local/DIS/
mkdir /usr/local/DIS/Lserver
cd /usr/local/DIS/Lserver
tar -xf /home/mystuff/lserver_vl23.tar

3.2 Compiling

Assuming no errors were encountered when the tar archive was unpacked, we are now

ready to compile the server. Change to the server's "home" (installation) directory and type

"./compile.sh":

cd /usr/local/DIS/Lserver
./compile.sh

By default, the compiling script uses "cc" to compile source code. This may be changed by

using a CC=compiler argument to the script. For example, to compile using /usr/gnu/bin/gcc,

type

./compile.sh CC=/usr/bin/gnu/gcc

Output for this procedure should appear similar to that shown in Appendix A.

3.3 Test Programs

Before running a client application, it will be necessary to define the environmental variable

VLS_HOME. This is set to the server's installation directory. In the C shell (csh), this is

accomplished by typing the command

set VLS_HOME=/usr/local/DIS/Lserver
setenv VLS_HOME /usr/local/DIS/Lserver

These same commands may be added to your Shome/.cshrc (C-shell initialization "run

command") file so that you will not have to retype these commands every time you run the csh.

Once VLS_HOME is set, the shell replaces the string "$VLS_HOME" with the argument to

which it was assigned.

The first test program simply tests that the server is able to communicate with a simple

client application. It is executed with the command

$VLS_HOME/bin/test_Xsimple.csh

The output should be similar to the following:

Tests connection to the simple server.
Uses Xwindows xterm (xterm must be in the current path).
Enter key when ready. . .

sleeping for 5 seconds...
4 . .-.
3 . . .
2 . . .
1 . . .
starting client program...

Client seems to be speaking with vlserver. - OK.

The next test program is more complicated since it requires a number of processes to be

sequentially or asynchronously executed. As with the simple test program, connectivity

between the server and client is verified. This time, however, the client will also query the server

for the results to a specific fire/detonation event. In order for the server to know about the event,

the ARL DIS manager is launched, DIS PDUs are broadcast to the DIS network, and the DIS

monitor provided with the server is run to monitor the PDUs. If errors are reported, it might be

because one or more of these programs was not running when it should have because of simplistic

"sleep" delays built into the test program. If this is the case, you might try to run the test

program again or change the amount of time the test program "sleeps" between launch times of

the various modules. This test program is executed with the following command:

$VLS_HOME/bin/test_Xall.csh

In addition to several windows opening for the various modules, the output should be similar to

the following:

Tests connection to the VLserver attached to the DIS monitor
Will also run ARL DIS Manager in order to do so.
Uses Xwindows xterm (xterm must be in the current path).

Enter key when ready. . .
sleeping for 5 seconds...
4 . . .
3 . . .
2 . . .
1 . . .
sleeping for 5 seconds...
4 . . .
3 . . .
2 . . .
1 . . .
sleeping for 20 seconds...
starting client program...
############# THE query WAS ###############
QUERY TYPE_mfkDIS_Result ARGS_mfkDIS_IDS 135 2 1005 135 2 12
############# THE answer WAS ###############
"5 Received from server:l: 4 0 "

This means that: 4 and 0 are the RESULT and FLAG codes,
respectively, returned by the server

RESULT code: 4
RESULT Meaning:PS_MFK_NODAMAGE - No Damage

FLAG code: 0 = Success.
FLAG Meaning:

0 Success.

The pkh source for the referenced entity and threat
munition (as defined in the DAMAGE_SOURCE_META_DATA_FILE)
was successfully found, interpreted, and used in
the calculation of the returned (VL_Result) value.

DIS Monitor seems to be speaking with vlserver. - OK.

This concludes the execution of the test programs. The following section explains the different

modules and data flow that occur during the execution of these test programs (and through the

server in general).

4. THE SERVER'S ARCHITECTURE

Figure 1 displays a view of the server's architectural layout. Boxes enclosed by solid lines

represent independent processes. Each of these processes may be run on separate computers.

The one exception is the DIS lethality server and DIS monitor; these two processes must

reside on the same host machine, as indicated by the dotted box. Dashed lines separating the

vulnerability/lethality (VL) API and Data Manager indicate that these represent DIS lethality
server service layers (APIs) that reside within a parent process.

DIS Network Traffic

UDP link

ARLDIS
Manager

iiii ■ ■ ■ i i

Single Host Computer _.
■■■iBMiiiaaiiiiaiiiiRBiii

Figure 1. DIS Lethality Server Architecture.

Not shown in Figure 1 is the clients' connectivity to the DIS network. To connect to the DIS
network, clients may choose to use the ARL DIS Manager (which is freely provided with the
lethality server), a commercially available product (such as VR Link®), or their own in-house DIS
networking library. It is not the responsibility of or within the scope of the lethality server to

decide how clients connect with the DIS network.

An explanation of the components follows:

• The ARL DIS Manager monitors DIS PDUs and sends them its own clients. In this case,
the DIS manager has one client (the DIS Monitor). Because the DIS monitor is currently
only concerned with MFK2 vulnerability resulting from munitions, it only requests to receive
(from the ARL DIS manager) entity state, fire, and detonation PDUs (since these are the only

2MFK - system damage in terms of mobility, fire power, and catastrophic damage; see Table 1 (Section 5.1) for a
further explanation of MFK.

PDUs necessary to calculate MFK results). The DIS monitor may request other PDU types

from the DIS manager as necessary.

• The DIS Monitor monitors all fire/detonation events (along with information concerning

any entities involved). It maintains cached records of these events. In this way, the

parameters involved will be available when the DIS Lethality Server queries it for the

results of a particular detonation event.

Upon receipt of a query from the DIS lethality server, the DIS monitor calls the VL API

which sets the appropriate parameters that describe the conditions at the time of the detonation

(e.g., munition type, velocity, etc.). (The API function vlpjprint_all_params() may be called to

show where the parameter values were set; see vlparam(3) in Appendix B.) The VL API then

calls the Data Manager API which provides data (presumably those data are the vulnerability

analysis results). The VL API layer then returns these data in a format appropriate to query.

The Data Manager API manages many types of low level data. It maintains records of

where to find data sources for each entity and threatening munition. It keeps track of which

functions are used to initialize (or read each type of data source into memory) and (once

initialized) which function to use to extract results (from the cached memory data structures). It

is also responsible for maintaining which DIS enumerations are used to describe a particular

vehicle, munition, or other item.

The job of the DIS Lethality Server (vlserver) component is relatively simple. This

component merely passes client queries to the DIS Monitor and returns the DIS monitor's

results to the client.

The blocks in Figure 1 labeled as "Client" represent clients of the DIS lethality server. The

current maximum number of clients that the server will accept is 32. This arbitrary limit may be

changed by modifying the value of the variable Max_Num._Clients in the source file

$VLS_HOME/src/Server/vlserver.c. In the case of our test programs (from Section 3.3), just one

client was active. These test programs were simply shell scripts that launch the various server

applications programs. (These programs are shown as separate processes in Figure 1.) When

these applications are not being launched from a shell script, the proper order of execution must

be followed. When started, the server components should be executed in the following order:

1st (or 2nd) ARL DIS manager.
2nd (or 1st) DIS lethality server.
3rd DIS monitor.
4th client(s) (to DIS lethality server).

The ARL DIS manager must be running before the DIS monitor is running. This is because the

DIS monitor is a client of the DIS manager. The DIS lethality server must be running before the DIS

monitor because the server creates a common shared memory. Furthermore, administrative details

concerning how to connect to this shared memory location are communicated to the DIS monitor

through a transmission control protocol/internet protocol (TCP/IP) link, of which the DIS monitor

is a client. After this initial network "hand shaking," the remainder of the communication occurs

through shared memory. Finally, clients of the DIS lethality server may join and leave as they wish.

In the following three sections, we explain how to execute and use these applications manually.

4.1 Server Application—ARL DIS Manager

The ARL DIS manager must be running before the DIS monitor is started. The DIS

manager may be started by typing

$VLS_HOME/bin/dis_mgr.exe -x off

The -x of f option turns off the DIS exercise identification (ID) number filtering. (This allows

multiple DIS exercises to be monitored.) If you would like to monitor only one exercise, use the

-x option followed by the exercise number. Other command line options may be seen by using

the -help command line option or by viewing the dis_mgr(l) "man" page in Appendix B. DIS

manager source code and documentation are presented in $VLS_HOME/src/Libs/DIS.

4.2 Server Application—The DIS Server

The DIS server must be started before the DIS monitor. To run the server, type the

following command line:

$VLS_HOME/bin/vlserver.exe

If you receive an error message similar to

pkg_permserver: bind: Address already in use
init_server(): Failed.
another vulnerability/lethality (V/L) server is probably already
using the Port: 4976. Use the "-P" flag to specify a different
server port.

This most likely means that the server is still running (perhaps as a background process or in

another window). Command line options and more details about the server are given in the

vlserver(l) manual page in Appendix B. In order for the server to respond to DIS vulnerability

queries, the DIS monitor must also be running. Starting the DIS monitor is explained in the next

section.

4.3 Server Application—The DIS monitor

To run the DIS monitor, type the following command line:

$VLS_HOME/bin/dis_mon.exe

You may receive an error message that includes information similar to

Connecting to DIS manager on YOUR_HOST_NAME...
pkg_open: client connect: Connection refused
Unable to connect to DIS manager on YOUR_HOST_NAME
cleaning up.

The DIS monitor needs to connect to the ARL DIS manager. This error message most likely

means that the DIS manager was not started or has stopped or that a path (network route) to the

computer where it is running could not be found. There are command line options that allow the

DIS monitor to look for the ARL DIS server at other computer IP addresses or sites. For

information about these and other command line options and details about the DIS monitor, see

the dis_mon(l) "man" page in Appendix B.

5. INITIALIZING THE SERVER

This section explicitly notes server starting options, location and formats of initialization

files, and other preparatory information required to start the server.

5.1 Server Initialization Files

Recall that the environmental variable VLS_HOME set from Section 3.3 is set to the

"home" directory where the DIS lethality server was installed. Initialization files are located in

the Data/Ink subdirectory relative to VLS_HOME. That is, initialization data files are located in

the directory

${VLS_HOME}/Data/Init/

The main initialization file in this directory is vls_db_init.ini. This file tells the server where to

find all the other initialization files. Only three initialization files are identified by vls_db_init.ini:

1. A DIS enumeration file—these are the names and equivalent DIS numerical
representation for entities, munitions, etc. More than 6,000 IEEE standard enumerations are
provided [2].

2. A DIS auxiliary enumeration file—intended for "additional" entities added for a
particular exercise.

3. A lethality "meta data" file—this tells the server all it needs to know about the lethality
data to be delivered upon demand. The meta data file contains meta data records.

A lethality meta data record identifies several items for the server. First, it specifies which

type of vulnerability/lethality (VfL) analysis method is used when a particular threat attacks a

certain target. Then it identifies where the data are given that describe the damage state outcomes

(with respect to the type of vulnerability analysis method in question). Finally, the meta data

record identifies which library functions are used to read the data source. (Identifying a library

function allows flexibility in how data are stored and retrieved. Vulnerability data need not be

just static "look-up" tables. They may be a reference to a network connection or even a

separately running application that calculates results "on the fly".)

It was stated that the lethality meta data file identifies the "V/L analysis method". One

such example of an analysis method is the mobility, firepower, catastrophic (MFK) method for

describing damage state outcomes (as seen in Table 1).

Table 1. MFK "Probability" Space

Outcome Outcome Explanation

MKILL Mobility and only mobility kill.

FKILL Firepower and only firepower kill.

MFKILL Mobility and firepower kills.

KKILL Catastrophic kill.

NoDamage No Additional damage inflicted.

In the MFK method, the set of all outcomes of a target-threat interaction are defined in terms

of these conditions. Since these sets are normally treated as probabilistic events, it is necessary

that the complete set of outcomes contain the universe of all possible events (so that their

probabilities may sum to one). Any number of analysis methods are possible, provided that

mathematical and probabilistic rules are adhered to and a reasonable V/L taxonomy is applied. It is

the responsibility of higher level applications (e.g., war games) to know what these V/L results

mean and to treat them in an appropriate manner. V/L server technology has potentially powerful

implications to the analysis community, provided the V/L metrics and applications that use them

(e.g., war games) are properly coupled [5]. Currently, the server just implements the MFK

method that is an "end game" description of kill probability given a hit ("PKH"). How another

method is incorporated into the server is explained in Section 7. Other specifics concerning the

formats for the vls_db_init.ini, DIS enumerations, and the meta data records are presented in the

vls_db_init(5) manual page in Appendix B.

6. COMMUNICATING WITH THE SERVER

This section shows in a general sense how application programs may communicate with an

initialized and running server. For the explicit details, see the manual pages for vlserver(l) and

vlsclient(3) in Appendix B.

The V/L server has a group of API calls specifically designed for high level applications

(such as war games and simulators). (That is, these applications are high level as viewed from the

perspective of executing high fidelity vulnerability calculations.) This API group is called the

VLSClient (or vlsclient(3)) library. For war games and other high level applications, this interface

to the V/L server provides the functionality and fidelity needed for detailed vulnerability analysis;

yet, this is accomplished with a relatively simple interface. These functions communicate directly

with a running DIS VL server module (vlserver) as shown in Figure 2 (a modified view of the

server architecture that was displayed in Figure 1).

To avoid confusion, the VLSclient library was not shown in Figure 1. The VLSclient

calls are actually compiled in a client's application. This is shown in Figure 2 where the font size

of the dashed lines separates Client from VLSclient. While the API may appear large in this

figure, the interface itself is quite simple, comprising only the four functions shown in Table 2.

Client applications need only open (vls_open()), a connection to the server. They may

send (vls_send()) and read (vls_read()) the answer to as many queries as they like and may close

(vls_close()) the connection when appropriate. The syntax for sending and receiving answers to

queries is explained in the vlserver(l) and vlsclient(3) manual pages of Appendix B.

10

Client' WLScltent
TCP/IPlink

DIS Network Traffic

Client IWLSctkmt

Client! VLSctmnt

Client WLSGUmt

. .. \sJSJJs;////j;ss/7-T77
I I I I I ■ ■ t I 1 I • I • a I ■ III Mill

VL Server
(vlserver)

r
Shared
Memory
Link

■* **

DIS Monitor

VLAH

,

D»u Mmiajtfr

TCP/IP
link

•ZZZZ2
UDP
link

ARLMS
Mtoaser

Single Host Computer

Figure 2. A Modified View of the Server Architecture.

Table 2. Application's Interface to the Server (VLSclient)

API Purpose

vis open() open a connection with the vl server.

vis close() close a connection.

vis send() send a message (usually a query) to the server.

vls_read() read data (usually an answered query) from the server.

7. EXPANDING THE SERVER

From a programming point of view, the server is designed to be expandable. However,

many extensions can be accomplished without programming (by manipulating system parameters

and initialization data; see Section 5). Other enhancements require additional software. This

section focuses on modifications that require changes in the software.

7.1 Adding a New Vulnerability Taxonomy Description (vulnerability method)

In Section 5, we described a vulnerability method implemented in the DIS V/L server (the

MFK method, Table 1). The server's overall architecture is designed to accommodate other

11

vulnerability descriptions upon demand by following the approach outlined in this section (some

assembly is required).

7.1.1 What is a Vulnerability Description?

In the MFK method, all outcomes of a target-threat interaction are defined in a finite set.

Since outcomes in these sets are normally treated as probabilistic events, the complete set of

outcomes must contain the universe of all possible events (so that their probabilities may sum to

one). Other methods of describing a system's vulnerable state may be defined (with more or less

fidelity) in the same manner (e.g., a simple binary methodology with two states, "dead" or

"alive"). That is, the outcome of a V/L analysis will result in the subject entity being classified as

either "dead" or "alive". Both the MFK and the dead/alive taxonomies are "vulnerability

descriptions". They describe a finite (yet comprehensive) set of outcomes that describe a

system's performance capabilities following the occurrence of some event. However, as far as

the V/L server is concerned, it is not necessary for probabilities to be associated with each

outcome. For instance, another vulnerability description could be a list of components. These

components could be identified as functional or nonfunctional. It would then be the

responsibility of the calling application to simulate the system's behavior when only certain

specified components were working. The process just described follows a very high fidelity

vulnerability methodology known as "degraded states" [6,7,8].

7.1.2 Why the Server Needs to Know Which Vulnerability Description is Used

The server needs to know which data to deliver to a client (and in what format). If a client

simulator is designed to operate using an MFK method, it would be meaningless to send this

simulator degraded states or any other V/L description. Secondly, the server needs to know

which battlefield environmental parameters to monitor (in order to initialize conditions for the

vulnerability calculation).

How then does the server distinguish between vulnerability methods and how does a client

communicate its wishes to the server? The short answer is that we first incorporate the

vulnerability method into the server, then select a protocol so that clients may query according .to

that vulnerability description. In the next section, we follow the steps for "folding" a new

vulnerability method into the server. This involves adding new APIs to the V/L API layer.

Later, in Section 7.3, we see how to establish a query-answer protocol (between a client and the

DIS server), which will allow remote access to these new APIs.

12

7.1.3 Incorporating a New Vulnerability Method Into the Server

The first step is to edit data structures in the vl_meth.h "include" file. By way of example,

suppose we wish to add a new vulnerability method that describes a vehicle or system as strictly

"alive" or "dead". Let us call this a BINARY method. First, we will edit the file

$VLS_HOME/src/Db/vl_meth.h and add the lines shown as bold in Figure 3. (The code in Figure

3 that is not bold was already present before any changes were made.)

Starting on line 32 of vl_meth.h of Figure 3, we see that base enumerations are created for the

new (BINARY) vulnerability description. The names of these base enumerations are preceded by a

double underscore " ". The reason behind this is to force the final revision of these names (for

subsets within the vulnerability description) to start with an enumeration of zero (0). The result is

that the first element name will have an internal value of zero (0), the second one (1), the third two

(2), and so on. In this way, when probabilities are returned by a (newly created) lethality server

API for every possible outcome in a vulnerability description set, they may all be returned in a

single array. The elements ofthat array may be referenced (in order) by using the names defined for

each outcome in the vulnerability description. (Look ahead to the final revision of the names

defined on lines 42 and 43.)

In Section 7.1.2, we noted that the server needs to know which data to monitor on the virtual

battlefield in order to have the proper parameters available for the lethality calculation. The next

section of code we turn our attention to (on line 104) is modified so that this may occur. Here, we

are adding a new enumeration for "collision" type interactions. The enumerations already defined (in

the data type VLSetParamJ), starting on line 86, are used to inform the server's V/L APIs which

parameters are significant for a particular calculation. These parameters are applicable for any type

of vulnerability methodology (e.g., MFK or BINARY). On line 104, we define the internal

enumeration VL_PARAM_SET_COLLISION to inform server APIs to prepare data parameters for

damage resulting from collision. Damage resulting from munition threats (both direct and indirect

fire) were already defined on lines 89-90. Later (in Figure 5), we shall see how server APIs use this

information to prepare initial conditions for a lethality calculation.

The VLSetParamJ enumerations (defined between lines 86 and 107) are internal values and

only have meaning within the V/L server code itself. It is also necessary for the server to be able

to associate these internal values with external representations. This association is made in the

VL_Meth_List[] array defined in Figure 3 on lines 119 through 140. The character string "DIS

Collision" is associated with our newly defined vulnerability parameter type on line 136 of

vljmeth.h (Figure 3). The server looks for these string representations when it reads the external

(* 0 *)
(* 1 *)
(* 2 *)

1 /* $Id: vl_meth.h,v 0.6 1997/08/21 17:08:58 geoffs Exp geoffs $ */
2 tifndef VL_METH_H
3 #define VL_METH_H
4
5 typedef enum _mfk_result_enums {
6 _PS_LOWER_BOUND = -3,
7
8 PS_ERROR = -2,
9 PS_MFK_LOWER_BOUND = -1,

10 PS_MFK_M =0, /* start at zero so it can be 1st element in an array*/
11 PS_MFK_F,
12 PS_MFK_MF,
13 PS_MFK_K,
14 PS_MFK_NODAMAGE,
15
16 /* if more Probability spaces are added, then
17 * we will have to add make the _mfk_result_enums
18 * hidden enumerations (like: " PS_MFK_M ")
19 * and add upper an lower bounds for that result
20 * type (like: PS_MFK_LOWER_BOUND,)
21 * then we do this:
22 * # define PS_MFK_M (PS_MFK_M- PS_MFK_LOWER_BOUND+l)
23 * # define PS_MFK_F (PS_MFK_F- PS_MFK_LOWER_BOUND+l)
24 * # define PS_MFK_MF (PS_MFK_MF- PS_MFK_LOWER_BOUND+l)
25
26
27 * an array is dimensioned:
28 * all_types_ps_mfk[PS_MFK_UPPER_BOUND]
29 */
30 PS_MFK_UPPER_BOUM3,
31
32 PS_BINARY_LOWER_BOUND,
33
34 PS_BINARY_DEAD,
35 PS_BXNARY_ALXVE,
36
37 PS_BINARY_UPPER_BOUND,
38
39 _PS_UPPER_BOUND
40 } VL_Result;
41
42 «define PS_BINARY_DEAD (PS_BINARY_DEAD- 1 - PS_BINARY_LOWER_BOUHD)/* 0 */
43 »define PS_BINARY_ALIVE (PS_BINARY_ALIVE- 1- PS_BINARY_LOWER_BOOND)/* 1 */
44
45 #ifdef VL_METH_C
46 struct _VL_Result_strings_t {
47 VL_Result id;
48 char *string;
49 },-
50 static struct _VL_Result_strings_t _VL_Result_strings []= {
51 { _PS_LOWER_BOUND, "_PS_LOWER_BOUND" },
52 { PS_ERROR, "PS_ERROR" },
53
54 { PS_MFK_LOWER_BOUND, " PS_MFK_LOWER_BOUKID" } ,
55
56 { PS_MFK_M, "PS_MFK_M" },
57 { PS_MFK_F, "PS_MFK_F" },
58 { PS_MFK_MF, "PS_MFK_MF" },
59 { PS_MFK_K, "PS_MFK_K" },
60 { PS_MFK_NODAMAGE, "PS_MFK_NODAMAGE" },
61
62 { PS_MFK_LOWER_BOUND, " PS_MFK_UPPER_BOUND" } ,
63
64 { _PS_UPPER_BOUND, "_PS_UPPER_BOOMD" }

14

65
66 /* add a BINARY Vulnerability Methodology */
67
68 { PS_BINARY_LOWER_BOUND, " PS_BINARY_LOWER_BOUND"},

69
70 { PS_BINARY_DEAD, "PS_BINARY_DEAD" },
71 { PS_BINARY_ALIVE, "PS_BINARY_ALIVE" },
72
73 { PS_BINARY_LOWER_BOUND, " PS_BINARY_UPPER_BOUND"},
74
75 { _PS_UPPER_BOUND, "_PS_UPPER_BOUND" }
76 };
77 #endif
78
79 /*
80 ~ VL_Meth data type.
81
82 * type used to indicate which data sources (inputs) are sufficient
83 * to set the VL parameters in order to be able to return the
84 * correct result from the lookup table (or other data source).
85 */
86 typedef enum {
87 _VL_INPUT_ENUMS_BEGIN = 0 /* below lowest boundary */
88
89 , VLJPARAM_SET_METH_DIS_HitToKill
90 , VL_PARAM_SET_METH_DIS_ProxKill
91
92 /*
93 * VLSetParam_t == VL_PARAM_SET_METH_DIS_HitToKill
94 * (or VL_PARAM_SET_METH_DIS_ProxKill)
95 * Indicates that passing the DIS PDUS
96 * Enity State (target)
97 * Enity State (firer)
98 * FirePDU
99 * DetonationPDU
100 * shall be sufficient to set the VL parameters to return the
101 * correct result from the lookup table (or other data source).

102 */
103
104 , VL_PARAM_SET_COLLISION
105
106 , _VL_INPUT_ENUMS_END /* upper boundary */
107 } VLSetParam_t ;
108
109 typedef struct _vl_meth_struc {
110 VLSetParam_t id; /»Analysis input Parameter Methodology Identifier */
111 char »name; /* String Identifier for this method
112 * (used in the Meta V/L Table list)
113 * "DAMAGE_SOURCE_META_DATA_FILE"
114 */
115 } VL_Meth;
116
117
118 #ifdef VL_METH_C
119 /*
120 * VL_Meth_List[] identify the which inputs are needed
121 * (e.g. for DIS - which PDUs are needed)
122 * and it also is used to identify what
123 * special procedures or processes are
124 * required handling to handle the inputs
125 * vulnerability calculation (e.g. when
126 * "DIS HitToKill" is being used, then
127 * the munition *MUST* hit the target to
128 * have ANY effect.

15

liy */
13Ü static
131
132
133
134
135
136
137
138
139 };
14Ü
141 #endif

static VL_Meth VL_Meth_List[] = {
{ _VL_INPUT_ENUMS_BEGIN, NULL}

{ VL_PARAM_SET_METH_DIS_HitToKill , "DIS HitToKill" }
{ VL_PARAM_SET_METH_DIS_ProxKill , "DIS ProxKill" }

{ VL_PARAM_SET_COLLISION, "DIS Collision" }

{ _VL_INPUT_ENUMS_END, NULL} /* upper boundary */

Figure 3. vl_meth.h Code Changes—Adding a New Vulnerability Method.

lethality "meta data" records (described in Section 5.1). A sample lethality meta data file (the

DAMAGE_SOURCE_META_DATA_FILE) is shown on the vls_db_init(5) manual page of

Appendix B. Specifically, the third field of a DAMAGE_SOURCE_META_DATA_FILE

contains the text string that associates a set of (initial condition) parameters with a vulnerability

data source that requires those parameters. In the meta data file excerpt (shown near the end of the

vls_db_init(5) manual page and repeated in Figure 7), "DIS HitToKill" is displayed as the string

identifying the vulnerability initial condition parameter requirements. Ön line 133 of Figure 3, we

can see that this external string is associated with the internal enumeration

VL_PARAM_SET_METH_DIS_HitToKill.

Next, we show how the server internally uses the enumerations (to pass the proper

parameters to server V/L APIs) and how multiple vulnerability methodologies are accommodated.

7.1.3.1 How the Server Accommodates Multiple Vulnerability Methodologies and
Multiple Types of Parameters

When a new vulnerability method is created, new API routines also have to be

created to deliver the new type of data.

These routines accomplish the following objectives:

1. They set the appropriate parameters that describe the conditions at the time a

lethal event occurs (e.g., munition type, terminal velocity, etc.);

2. Once these parameters are set, the delivery routine must then call the appropriate

lethality analysis algorithm (this could be as simple as a table look-up function); and

16

3. They finally return the data (in a form and format that is appropriate for that

vulnerability method) to the calling function. This architecture is depicted in Figure 4 where we

see a data delivery layer, a lethality data reader (table look-up) layer, and a vulnerability

parameter layer between them. The layers seen in Figure 4 are actually sub-layers that fall within

the larger V/L API layer, which was shown in Figure 1.

"vUÄPMayer"" "

Result Delivery Routines sublayer

Step 1. Data delivery layer
sets ML Parameters

1

Vulnerability Parameters sub-layer
i

Step 2. Table look-up layer
reads VL Parameters

.

"Table Look-up" Routines sub-layer

Figure 4. V/L API: Lethality Data Delivery. Parameters, and Reader Layers.

Because the Result Delivery sub-layer needs to set values in the Vulnerability

Parameters sub-layer, routines in the Result Delivery sub-layer must have prior knowledge of

all the environmental information necessary to complete lethality calculation for the vulnerability

method in use. For example, in order to describe the results of a munition impact, the MFK

methodology requires information from the DIS fire, detonation, and entity state PDUs.

Therefore, these PDUs are passed to all Result Delivery sub-layer routines that service the MFK

methodology. We may examine prototypes of some implemented MFK delivery routines (shown

in Table 3). (These APIs are documented in detail in the vl(3) manual page of Appendix B.)

Notice that each routine has a VLSetParamJ enumeration as its first argument. This first argument

(VLSetParamj itype) informs the called API in what form the environmental variables will appear.

That is, it tells the function which arguments will be substituted for the "..." seen in Table 3.

17

Table 3. Some Result Delivery APIs (for the MFK methodology)

ANSI C Prototype Declaration (for the MFK Methodology).

float* vl mfk._ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...);

double _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, ■■■)

double vl mfk_ArlDIS_ProbMF_NoNet(VLSetParam__t itype, ...);

double vlmfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, ■■■);

double _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParaiti_t itype, . . .) ;

double vl mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, .. .) ;

VL Result vl_mfk_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype,)

Thus far, the server only has two possible values of type VLSetParamJ (namely,

VL_PARAM_SET_METH_DIS_HitToKilland VL_PARAM_SET_METH_DIS_ProxKill).

Each of these parameter setting indicators informs the server to expect DIS fire, detonation, and

entity state PDU arguments to follow as the remaining arguments to the function call. They also

inform the server that a "munition" is the damage-causing mechanism. (The delivery routines will

then proceed to set "munition" type variables in the Vulnerability Parameters sub-layer by

using these passed PDU arguments.)

However, we could easily define a new VLSetParamJ type that tells the delivery

routines to expect some other type of arguments (in order to return an MFK result based on

different input parameter formats). For example, non-munition damage (such as damage caused

by a collision between moving vehicles) could be accommodated by adding a new VLSetParamJ

type (e.g., VL_PARAM_SET_METH_DIS_COLLISION) in which the resulting delivery

routines would now expect "collision" type variables (as the remaining arguments). In the DIS

environment, a combination of collision and entity state PDUs would suffice as arguments. The

delivery routines could then return MFK results based on these different damage-causing

mechanisms (provided that valid data sources existed in the "Table Look-Up" sub-layer that

described MFK damage resulting from those mechanisms [e.g., vehicular collisions]).

7.1.3.2 Adding V/L Layer API Routines for a New Vulnerability Method

We now return to the sample task—adding to the V/L API's Result Delivery sub-

layer a new vulnerability method that describes an entity's vulnerability state as strictly "alive"

or "dead" (our "BINARY" vulnerability method).

18

First, we need to decide what values are useful to be returned by the BINARY

method APIs. These values are then returned by the new V/L API functions we will write. In

this case, we shall have several returned types. A function will be written for each type. Using

this approach, we outline a new set of APIs in Table 4. We can follow the function-naming

pattern already used in the MFK APIs (shown in Table 3).

Table 4. Newly Defined Result Delivery APIs (for the BINARY methodology)

ANSI C Prototype Declaration (for the BINARY Methodology)

float* vl_binary_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...);

double _vl_binary_ArlDIS_ProbDEAD_NoNet(VLSetParam_t itype, ...);

double _vl_binary_ArlDIS_ProbALIVE_NoNet(VLSetParam_t itype, . . .) ;

VL_Result vl_binary_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, ...)

Briefly, the specific purpose of each API is as follows:

double _vl_binary_ArlDIS_ProbDEAD_NoNet(VLSetParam_t itype, . . .) ;

returns the probability that the outcome of the event results in a "DEAD" state for the system in

question.

double _vl_binary_ArlDIS_ProbALIVE_NoNet(VLSetParam_t itype, ...);

returns the probability that the resulting outcome of the event is an "ALIVE" (or non-DEAD)

state of the system in question.

float* vl_binary_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...) ;

returns an array containing the probabilities of all possible outcomes occurring. The array elements

are indexed according to the internal definitions we established in the vl_meth.c file (Figure 3, lines

42 and 43). Namely, the "[PS_BINARY_ALIVE]" element of the array contains the probability

that the outcome of the event results in an "ALIVE" (or non-DEAD) state of the system in

question. Similarly, "[PS_BINARY_DEAD]" indexes the probability of a "DEAD" state.

VL_Result vl_binary_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, ...);

determines the probability of each event occurring, then randomly draws an outcome from the set

of possible events. The outcomes are drawn according to the distribution established by the

19

probabilities. The answer returned is of type VL_Result. Therefore, the only allowed results

returned by this API are _PS_BINARY_ALIVE and _PS_BINARY_DEAD, as we established

in lines 34 and 35 of Figure 3. In fact, any result not falling between _PS_BINARY_LOWER_BOUND

and _PS_BINARY_UPPER_BOUND should be considered invalid. For example, if

P(PS_BINARY_ALIVE)=.75 and P(PS_BINARY_DEAD) = .25, then about 75% of the time, a

VL_Result of _PS_BINARY_ALIVE will be returned (and _PS_BINARY_DEAD will be

returned 25% of the time).

Each of these APIs will read the passed parameters, use those parameters to set initial

conditions (in the Vulnerability Parameter sub-layer), call the vulnerability analysis routine (in

the Table Look-up sub-layer), and return the result. By way of example, we will concentrate on

the API vi_binary_ArlDis_ProbAii_NoNet (). The other APIs will follow a similar pattern.

vi_binary_AriDis_ProbAii_NoNet () will return an array of floating point

numbers that represent the probabilities of achieving the two kill levels (dead or alive). When

called, this function's first argument (itype) could be any of the VLSetParam_t enumerations

we defined on lines 86 through 107 of Figure 3. Figure 5 displays a sample ANSI C function

showing how vi_binary_AriDis_ProbAii_NoNet () could be implemented.

On line 9 of Figure 5, we define a default outcome (binaryPS_HasNoEf f ect) that is

returned when an exception occurs in which we know that there will be no additional damage to the

entity or component being threatened. Later (on line 140), we shall see how this default outcome

shall be used to prevent an erroneous result from being returned during certain conditions.

The next significant portion of the code we note is on line 59 where we determine what

input parameters are required in order to establish the proper initial conditions for the vulnerability

calculation. From lines 61 through 74, the "collision" initial condition parameter is handled. We see

that when "collision" is the damage mechanism being evaluated, the collision PDU and the entity

state PDUs must be provided as arguments to the API. The entity state PDUs that are provided

are for both the entity whose vulnerability is being evaluated (shown as "tgt" on line 66) and the

entity that is colliding with it (coiiiding_entity). The order in which these arguments are

provided is significant. Following retrieval of the arguments (on lines 66 through 68), these PDUs

are used to set parameters in the Vulnerability Parameter sub-layer "VLParam". (The VLParam

layer is shown on Figure 4 and documented in the manual page VLParam(3) in Appendix B.)

Source code for the function (vip_setp_aii_coiiision_Frm_Dis ()) shown on line 71 is not

provided. Its purpose is to decompose the PDUs passed to it, extract applicable information from

them, and use that information to set the appropriate variables in the VLParam layer. It is assumed

20

1 #include <stdlib.h>
2 #include <stdarg.h>
3
4 »include "vl.h"
5 »include "vl_meth.h"
6 »include "vlparam.h"
7 »include "metatbls.h"
8
9 static float binaryPS_HasNoEffect[]={ 0., 1.};
10 /*
11 * recall that PS_BINARY_DEAD = 0
12 * PS_BINARY_ALIVE = 1
13 * therefore binaryPS_HasNoEffect[]={ 0., 1.} ;
14 * is structured so that the first (zero'th element)
15 * may be indexed by PS_BINARY_DEAD (i.e.
16 * binaryPSJHasNoEffect[PS_BINARY_DEAD]).
17 V
18
19 /*
20 - vl_binary_ArlDIS_ProbAll_NoNet()
21
22 * float * vl_binary_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...)
23
24 * This function returns a static array containing probabilities of
25 * certain kill levels.
26
27 * The first parameter argument is of type VLSetParam_t.
28
29 * This type is used to indicate which data sources (inputs)
30 * are sufficient to set the VL parameters in order to be able
31 * to return the correct result from the lookup table
32 * (or other data source). These indicated data sources (inputs)
33 * shall then be the 2nd, 3rd, 4th, ... etc. parameter arguments
34 * to the function.
35
36 * RETURNS:
37
38 * An array containing the probability of all possible outcomes.
39 * The array elements are defined as follows:
40
41
42 * Array Element (index)
43 * Element Value Value Meaning
44 *
45 * 0 PS_BINARY_DEAD Probability that the subject is dead
46 * 1 PS_BINARY_ALIVE Probability of not being dead.
47 */
48 float * vl_binary_ArlDIS_ProbAll_NoNet (VLSetParam_t itype, ...)
49 { va_list ap;
50 static char *whoami="vl_binary_ArlDIS_ProbAll_NoNet()" ;
51 float *ret;
52 int missed_me, error, do_vl_calc, ok_to_query;
53
54 ok_to_query = 0; /* false */
55 ret = NULL;
56 error = 0;
57 va_start(ap, itype);
58

. 59 switch (itype) {
60
61 case VL_PARAM_SET_COLLISION:
62 EntityStatePDU *tgt, *colliding_entity;
63 CollisionPDU »collision;
64

21

65 /* extract the 2nd, 3rd, and 4th arguments */
66 tgt = va_arg(ap, EntityStatePDU *);
67 colliding_entity = va_arg(ap, EntityStatePDU *);
68 collision = va_arg(ap, CollisionPDU *);
69
70 vlp_zero_all_params(); /* initialize paramters */
71 vlp_setp_all_Collision_Frm_DIS(tgt, colliding_entity, collision);
72 ok_to_query = 1;
73
74 break;
75
76 case VL_PARAM_SET_METH_DIS_HitToKill:
77 case VL_PARAM_SET_METH_DIS_ProxKill:
78 {
79 EntityStatePDU *tgt, *shooter;
80 FirePDU *fire;
81 DetonationPDU *det;
82
83 /* extract the 2nd, 3rd, 4th, and 5th arguments */
84 tgt = va_arg(ap, EntityStatePDU *);
85 shooter = va_arg(ap, EntityStatePDU *);
86 fire = va_arg(ap, FirePDU *);
87 det = va_arg(ap, DetonationPDU *) ;
88
89 /* test to see that we know what type of target is present */
90 if (tgt==NULL) {
91 _rp t_error (RE_TGT_UKNOWN , whoami) ;
92 ++error;
93 } else if (det==NULL) {
94 _rpt_error(RE_THREAT_UKNOWN , whoami);
95 ++error;
96 }
97
98 if (error==0) {
99 missed_me = FALSE;

100 if (itype == VL_PARAM_SET_METH_DIS_HitToKill) {
101 /*
102 * See if we can
103 * ignore the detonation based on the result field.
104
105 v
106 if (TRUE == vl_mfk_directFireIsAHit(det->detonation_result))
107 missed_me = FALSE;
108 else
109 missed_me = TRUE;
110 }
111
112 do_vl_calc=FALSE;
113 if (error == 0) {
114 if (missed_me == TRUE) {
115 /* NOT a direct entity impact */
116 switch(itype) {
117 case VL_PARAM_SET_METH_DIS_HitToKill:
118 do_vl_calc=FALSE;/* leave as false */
119 /*
120 * we know we missed with a hit-to-kill
121 * threat. So we attempt to lookup
122 * the (wrong) answer according
123 * to the vl parameters.
124 * But we do return a result.
125 */
126 ret = mfkPS_HasNoEffect;
127 break;
128 case VL_PARAM_SET_METH_DIS_ProxKill:

22

129 /* we don't care if it did miss - calc anyway. */
130 do_vl_calc=TRUE;
131 break;
132 default:
133 cprint(CH_WARN,
134 "%s: switch missing case for method type %d\n", itype) ,
135 break;
136 }
137 } else {
138 do_vl_calc=TRUE;/* no errors an we hit tgt! */
139 }
140 }
141 if (do_vl_calc) { /* tgt is hit */
142 vlp_zero_all_params () ; /* initialize paramters */
143 vlp_setp_all_Munition_Frm_DIS(tgt, shooter, fire ,det);
144
145 /*
146 * vlp_setp_all_Munition_Frm_DIS ()
147 * will have set VLP_target_id
148 * VLP_threat_id
149 * and other VLP_* parameters.
150 */
151 ok_to_query = 1;
152 }
153 } /* end if error==0 */
154 } /* end case: stmt. */
155 break;
156
157 default:
158 cprint(CH_ERR,"%s: passed unknown VL methodology (%d)\n"
159 ,whoami,itype);
160 break;
161 }
162
163
164
165 /*
166 * What this final code segment does:
167
168 * At this point the parameters have been added to the
169 * the VLParam layer (see VLParamO) manual page
170 * If no errors occurred, then we are ready to
171 * look for a meta record that matches the tgt, threat.
172 * AND vulnerability method (namely "BINARY").
173 * Once we have that record, we can retrieve a the
174 * data source (URL) and the vulnerability calculation
175 * function.
176 * Finally we call that function and return its results.
177 */
178 if (ok_to_guery == 1)
179 { MetaTable_t mquery;
180 MetaTable_t *mrec;
181 extern MetaTable_t *MetaTable_get_rec () ;
182 float *f, *(*funcptr)(void *);
183 VL_Meth *mptr;
184
185
186 /* zero meta Table data structure */
187 memset((void*)&mquery, (int) 0, sizeof (MetaTable_t));
188
189 mquery.tgt = (dbEntityType*) &VLP_target_type;
190 mquery.threat = (dbEntityType*) &VLP_threat_type;
191 mptr = vl_meth_get_FromID (itype);
192 if (mptr==NULL) {

23

193 cprint(CH_ERR,"%s: internal error\n",whoami);
194 break;
195 }
196 mquery. vl_meth= mptr->name;
197
198 mrec=MetaTable_get_rec (mguery. tgt,mquery. threat, itype) ;
199 if (mrec==NULL) {
200 /* if mrec == NULL then no record found */
201 _rpt_error(RE_NO_META_REC ,whoami) ;
202 ++error;
203 } else {
204 funcptr = db_tbl_result_func(mrec);
205 if (funcptr != NULL) {
206 f = funcptr(db_tbl_retrieve(mrec));
207 if (f==NULL) {
208 /* error reading tbl result */
209 _rpt_error(RE_VLSOURCE_INTERP ,whoami);
210 ++error;
211 }
212 ret = f;
213 } /* endif (funcptr != NULL) */
214 } /* end if (mrec == NULL) else */
215 } /* end if (ok_to_query == 1)
216
217 va_end(ap);
218
219 return ret;
220 }

Figure 5. Adding an API for a New Vulnerability Method vl binary ArlDIS ProbAU NoNetQ.

that additional parameters needed to execute a collision damage assessment have been added to

the VLParam layer (such as the masses of the colliding entities, etc.).

If no errors occurred in setting the VLParam parameters, then the vulnerability

assessment may proceed (on lines 178 through 215).

Meanwhile, we note that the case for "munition" type damage is handled between

lines 76 and 161. The first thing we note about this section of code is that it is much longer than

the "collision" damage section; yet, it does essentially the same thing (initializes the VLParam

layer's variables). The difference is that this code section performs robust and proper error

checking throughout. Errors are recorded to rpt_error APIs (see rpt_error on the cprint(3)

manual page in Appendix B). Rpt_error APIs store important information about what went ,

wrong when errors occur; this information may be extracted by other routines. (This is useful

because the application-calling server routines may be removed by several layers from the APIs

where the error occurred. By the time the program returns to the application level, the nature of

the error may be lost.) A second thing this section of code adds is that it tests for exception

conditions. In this example, test for a direct hit against the queried target. If we determine that

the munition requires a direct impact on the target to initiate any significant damage but we

24

"missed" the target, then a special exception value is returned (on line 126). This is the value we

defined on line 9.

We now return our attention to lines 178 through 215. At this point, the parameters

have been added to the VLParam layer. If no errors or exceptions occurred, then we are ready to

look for a meta record that matches the target, threat, and vulnerability method used. Lines 189

through 196 gather the threat, target, and V/L method identifier. Notice that the target and the

type of threat that is threatening it are extracted from the VLParam layer on lines 189 and 190.

The variables shown here are members of the VLParam layer (vLP_target_type and

VLP_threat_type). The external form of the vulnerability method is required to retrieve the

meta data record. (Remember that we defined external representations for these types on lines

120 through 140 in Figure 3.) On line 196 of Figure 5, the external American standard code for

information exchange (ASCII) identifier of this vulnerability method is used to fill the V/L

method field of the meta record being queried. These data items are added to a blank meta data

structure. We then search for the meta record that matches these parameters on line 198. (Recall

that we explained how and where vulnerability meta data records were read in Section 5.1 and in

Appendix B, vls_db_init(5).) Once we have that meta data record, we may retrieve the location

of the appropriate lethality data (in uniform resource locator [URL] format) and the function that

calculates the system's vulnerability. On line 204, we obtain a pointer to that function from the

data manager API db_tbi_resuit_f unc (). This referenced function operates on a data set to

return the lethality calculation for a set of initial conditions that are provided by the VLParam

sub-layer. We call this function the lethality "data look-up function" because it often is just

parsing a look-up table. However, it may actually do the lethality calculation itself or initiate

other processes that do the calculation. How it gets the results is not a matter of concern as long

as it returns the results appropriate to the vulnerability method in use (the "BINARY" method in

our sample case). The API db_tbi_retrieve () that we see used on line 206 returns that data

set to be operated upon by the "data look-up function". Normally, db_tbi_retrieve () returns

a table of vulnerability results that are then used as the look-up table for our table look-up

function. However, db_tbi_retrieve () need not return a look-up table; it could return a URL,

a password, or any data structure or value. As with the data look-up function, it does not

matter, as long as whatever it returns will be usable by the table look-up function to return the

correct results for the present vulnerability calculation. The APIs, db_tbi_resuit_f unc () and

db_tbi_retrieve (), are documented in the db(3) manual page of Appendix B. How and where

the data look-up functions are placed into the server is the subject of Section 7.2.

25

Finally, on line 206, we call our data look-up function and return its results (on line

219) to complete the vulnerability calculation.

7.2 Adding a New (look-up) Table Format

Every lethality data set type is required to have a data reader (also called data look-up

function) and a data loader function. The loader function initializes the lethality data set. This

may simply involve reading a static table into memory or may involve slightly more complicated

initialization procedures such as opening network connections, etc. There is really no limit as to

what the loader function does. (However, the data loader functions provided with this initial

release of the DIS lethality server only read and load static "look-up" tables into memory.) The

second required function, the data reader (or look-up) function, has the responsibility for

accessing the initialized data set. It then returns results that are appropriate for the associated V/L

method. How these two functions are incorporated into the server is explained in this section.

Both the data reader and the data loader functions must be defined and compiled into the

server before "run time". The following steps outline the procedure for doing this:

1. Add an internal identifier to the list of enumerations that identify new data sources.

2. Write prototypes for the two functions and add them to a static table.

3. Add the source code for your prototyped functions.

4. Recompile the server.

These four steps are now covered in detail in the next four sections.

7.2.1 Adding Internal Identifiers for New Types of Vulnerability Data (or formats)

Unique internal identifiers are required for each new type of vulnerability data. A

vulnerability data type may be considered "new" not only if it is new, but also if it is a previously

defined vulnerability data type that is packaged in a different manner. For instance, a look-up table

of IUA3 data could be for a high explosive antitank (HEAT) munition threat, or it could be for a

kinetic energy (KE) munition. Both data sets represent the same type of data (MFK), but both

have tabular formats that differ (IUA HEAT format versus IUA KE). Hence, each needs its own

data reader function (and internal identifier). The file $VLS_HOME/src/db/tbl_fmts.h contains

3IUA (individual unit action). This type of data represents loss of combat capability for a given threat. The
tabulated data are formatted in columns and rows according to target range, aspect angle of attack, and kill level
(MFK).

26

references to all the known data formats. Figure 6 displays this file. On lines 14 and 15 of Figure 6,

we can see where internal enumerations for IUA data types are provided (for both HEAT and KE

formats).

By way of example, we shall add a new format for the "collision" damage we defined on

line 136 of vl_meth.h in Figure 3. On line 18 of Figure 6, we define PKS_BINARY_COLLISION to '

represent our new data type. This enumeration internally represents a data file format (or

function, network protocol, etc.). Data look-up (also called reader) functions will be written,

which will return data that are commensurate with whatever we expect to be returned by this

newly defined data type. That data type is associated with our "BINARY" V/L methodology.

This may sound rather enigmatic, but the fact is that the data source may be anything (not just a

static data file of a particular format). It could be a database, a network connection, a "spawned"

program, or just about anything. Our data reader (and initializer) functions (which we will write

later) are the sole entities that need to know these particulars. What is important is that the V/L

API, which indirectly calls the data reader function, receives what it expects to receive from the

data reader. The important point is that the data reader function and the V/L API that calls it

agree about what shall be returned and how it is properly used. In this particular example, it will

expect to receive an array of probabilities from the "BINARY" vulnerability set. (This is what

we assumed when we wrote the API function "vi_binary_AriDis_ProbAii_NoNet ()" shown

in Figure 5.) On line 206 of this function (Figure 5), the data reader returns its set of data, the

results of the vulnerability analysis. This returned value (which is really of type "void *") is cast

to a pointer to a floating point array ("float *"). Hence, the data reader is expected to return a

pointer to a floating point array that contains the probability of a kill and the probability of not

being killed (in accordance with the BINARY vulnerability methodology we established). The

point is that the V/L API function had better understand quite clearly what type of data set is

going to be returned for a given vulnerability methodology (BINARY method for collision damage

in this case). As we continue to examine the file $VLS_HOME/src/db/tbl_fmts.h in Figure 6, we

shall see how this association is established.

7.2.2. Adding New "Table Lookup" Function Prototypes

On lines 130 through 134, we added a new element to the Lookupjrbis [] array. This is the

point where the association is made between the data reader function and the data type identifier.

On line 130, the internal enumeration we created on line 18 is used to identify the new type of

vulnerability we are referencing. Following this, the ASCII string "PKS_BINARY_COLLISION"

is used for the "name" field. This is an important field because it becomes the external

representation of our new data type (and data source format). This name must appear in the

27

1 #ifndef _TBL_FMTS
2 «define _TBL_FMTS
J
4 «include <stdio.h> /* ANSI C header files */
5 /* local header files */
6 «include <tbl_rdrs.h> /* prototypes of your table reader(s) go here */
7 «include "vl_meth.h"
8
9 enum _TblFmt_Enum {

10 _TBLEMT_ERROR =0 /* err==0, see tbl_fmt_is_valid_type() */
11 ,_START_OF_TblFmt_Enum
12
13 ,IUA_HE
14 ,IUA_HEAT
15 ,IUA_KE
16 ,IUA_STAFF
17
18 ,PKS_BINARY_COLLISION

19
20 ,_END_OF_TblFmt_Enum
21 >;
22 typedef enum _TblFmt_Enum TblFmt_Enum ;

23
24 /*
25 * TblFmt_Enum identifies the table (or data) format.
26
27 */
28
29
30
31 typedef struct TblFmt2ResultType_struct {
32 TblFmt_Enum fmt; /* format of data source */
33 VL_Result returned_type; /* the type of result returned
34 * by the reader function

35 */
36 } TblFmt2Result_t;
37 /*
38 * TblFmt2Result[] will have one entry for every
39 * known table format (that is one for every
40 * TblFmt_Enum) .
41 V
42
43
44 typedef struct _TblFmt_t {
45 TblFmt_Enum type; /* enumeration for your table format
46 * - This identifies the format of the
47 * data in the table.

48 v
49 char *name; /* a single word name for your table format /
50 char »description; /* a short description of it */
51 void *(*reader_func)(FILE *); /* reader function takes on FILE* arg */
52 void *(*result_func)(void *);/* VL reporting function */
53 /* result_func() takes argument pointer
54 * to the look-up table structure loaded
55 * into memory.
56 */
57 ■ /* returns vl data which describes
58 * the result of the lethality event.
59 * The format of the data is up to the
60 * returning function.
61 * However, it must agree with the
62 * output format which is implied by
63 * the "name" field.
64

28

65
66 * For instance if
67 * name = "IUA_HEAT"
68 * then result_func will return
69 * a floating-point array of 5 numbers.
70 * (Its returned value should therefore
71 * be cast as (float *)).
72 */
73 } TblFmt_t;
74
75
76
77
78 # ifndef _DB_C
79 extern TblFmt2Result_t TblFmt2Result[];
80 extern TblFmt_t LookUp_Tbls[];
81 # else
82 static TblFmt2Result_t TblFmt2Result[] =
83 c
84 { IUA_HE, PS_MFK_L0WER_BOUND } /* returns MFK data */
85 ,{ IUA_HEAT, PS_MFK_LOWERJBOUND } /* returns MFK data */
86 ,{ IUA_KE, PS_MFK_LOWER_BOUND } /* returns MFK data */
87 ,{IUA_STAFF, PS_MFK_LOWER_BOUND } /* returns MFK data */
88
89 ,{PKS_BINARY_COLLISION, PS_BINARY_LOWER_BOUND}/*returns BINARY pk data */
90
91 };
92 static TblFmt_t LookUp_Tbls[_END_OF_TblFmt_Enum+l] = {
93 { _TBLFMT_ERROR , "_error" , "Not a known table format" , NULL , NULL }
94 , {_START_OF_TblFmt_Enum, NULL, NULL , NULL, NULL }
95 /* */
96 /* DO NOT ADD ABOVE THIS LINE */
97 /*+struct format is: +*/
98 /*{ enum name descript reader_func result_func|*/
99 /*+ +*/

100
101 /*
102 * If you get a "tblfmt_WHATEVER_NAME" undeclared here.
103 * then you may have not added its prototype to the header file:
104 * #include <tbl_rdrs.h>
105 */
106
107 ,{IUA_HE,"IUA_HE","(IUA) High Explosive (HE)"
108 ,tblfmt_iua_heat_rd
109 , tblfmt_iua_heat_result
110 }
111
112 ,{IUA_HEAT,"IUA_HEAT","(IUA) High Explosive Anti-Tank (HEAT)"
113 ,tblfmt_iua_heat_rd
114 , tbl fmt_iua_heat_result
115 }
116
117 ,{IUA_KE,"IUA_KE","(IUA) Kinetic Energy (KE)"
118 , tblfmt_iua_ke_rd
119 ,tblfmt_iua_ke_result
120 }
121 /*
122 * top attack ("Staff munition"):
123 v
124 ,{IUA_STAFF,"IUA_STAFF"
125 ,"(IUA) STAFF Explosively Formed Penatrator (EFP)"
126 , tblfmt_iua_s taf f_rd
127 , tblfmt_iua_staf f_result
128 }

29

129
130 ,{ PKS_BINARY_COLLISION, "PKS_BINARY_COLLISION"
131 ,"(P-K) For Collisions returns BINARY V/L Methodology"
132 ,tblfmt_binary_collision_rd
133 ,tblfmt_binary_collision_result
134 }
135
136
137 /* */
138 /* DO NOT ADD BELOW THIS LINE */
139 /* */
140 , {_END_OF_TblFmt_Enum, NULL, NULL, NULL, NULL }
141
142 >;
143 # endif /* ifndef TBL_FMTS_C */
144
145
146 VL_Result db_tbl_fmt_result_type(char *fmtname); /* data type returned by lookup*/
147
148 #endif /* ifndef _TBL_FMTS */

Figure 6. "tb1_frnts.h" Used for Data V/L Data Reading and Tnitialization.

external meta records that reference collision damage data returned in a format consistent with the

BINARY vulnerability methodology. Line 131 describes the vulnerability data type and format in

human terms and has no logical programming value (but is used in print statements). Lines 132 and

133 are the names of the vulnerability data initialization and reader functions, respectively.4

When a meta data record is read, the data format's external representation appears in the

"format" field of the record ("PKS_BINARY_COLLISION" in the case of the collision damage

described in terms of our BINARY methodology). For example, the meta data records shown in the

vls_db_init(5) manual are repeated in Figure 7. On the last line of Figure 7, we see that

"IUA_HEAT" is in the "format" field. This tells the server to use the record shown on lines 112

through 115 (of Figure 6) to determine which data initialization and data reader function to use.

When the data initialization function is called, the last field of the meta data record is passed to it as

an argument. The last line of Figure 7 shows that "file: /Data/Tables/iUA/smplHEAT. iua" is

the argument that is passed to the initializing function under the conditions set forth by the record's

target, threat, and vulnerability method as dictated on that line.5 The initializer function must return

a pointer. Later, when a lethality query is made, that same pointer will be available for use by the

look-up (or reader) function. The lethality server maintains this pointer and provides it when

4(This naming convention might be confusing since "tbIfmt_binary_colIision_rd" is not the reader function but
the initializer function. (The "_rd" convention originated because, thus far, the server has only been used for static
look-up tables; hence, the duty of the initialization function was to read [ergo, "_rd"] the static data into memory.)
The duty of the second function (our current "reader" function) was to parse the static table (now in memory) and
return the correct vulnerability results (ergo, the "_result" convention).
5Namely, the conditions are when a "T-80" tank is attacked by an "AT-5 Spandrel missile" and evaluated using
the "DIS HitToKill" vulnerability methodology.

30

needed by the reader (or table look-up) function (i.e., when a vulnerability analysis query is made
for the very same target, threat, and vulnerability method). This pointer could point to anything as

long as the data reader (or table look-up) function is able to use the data set (referenced by the
pointer) in such a way as to allow the function to return the correct lethality results (for the given

vulnerability initial conditions6).

DIS enumerations are IEEE 1278.1-1995 Standard.
Note that the file URL location is taken relative
to the $VLS_HOME directory.
#—next line's tgt and threat are: Soviet 125mm KE Threat VS. a T-80 target.
1 1 222 1 1 1, 2 2 222 2 11,"DIS HitToKill","IUA_KE","file:/Data/Tables/IUA/smplKE.iua"
#—next line's tgt and threat are: Soviet 120mm HEAT-FS VS. a T-80 tgt.
1 1 222 1 1 1, 2 2 222 2 18,"DIS HitToKill","IUA_HEAT","file:/Data/Tables/IUA/smplHEAT.iua"
#—next line's tgt and threat are: AT-5 Spandrel missile VS. a T-80 tgt.
1 1 222 1 1 1, 2 2 222 1 7, "DIS HitToKill","IUA_HEAT","file:/Data/Tables/IUA/smplHEAT.iua"

Figure 7. Example of Records for a Meta Data File.

As mentioned, the lethality server architecture is designed to allow these functions to return

any type of data. Thus far, however, they have only been used to initialize (and look up the
results) of static look-up tables. This has been implemented by having the initialization file look
for (and read) the data file referenced in the meta data record (the URL address in the last field of a
meta data record). The last line of Figure 7 shows "file: /Data/Tables / iUA/smpiHEAT. iua" as

this data file for that meta data record. The initialization function loads this static data table into a
data structure and returns a pointer to the memory location ofthat data structure. The result (or
table look-up) function knows how to parse this data structure. When the result function is called,
it receives a pointer to this data structure and proceeds to parse it and returns the correct results.
Figure 8 displays our two new initializer and reader functions added (in bold text).

6Recall that those initial conditions are provided by the VLParam sub-layer.

31

1 /* $Id: tbl_rdrs.h,v 0.4 1998/03/23 04:20:48 geoffs Exp geoffs $ */
2
3 extern void *tblfmt_iua_ke_rd(FILE *in_fp);
4 extern void *tblfmt_iua_ke_result(void *) ;
5
6 extern void *tblfmt_iua_he_rd(FILE * fp) ;
7 extern void *tblfmt_iua_he_result(void *);
8
9 extern void *tblfmt_iua_heat_rd(FILE * fp);
10 extern void *tblfmt_iua_heat_result(void *) ;
11
12 extern void *tblfmt_iua_staff_rd(FILE *fp);
13 extern void *tblfmt_iua_staf f_result(void *) ;
14
15 extern void *tblfmt_binary_collision_rd(FILE *fp);
16 extern void *tblfmt_binary_collision_result(void *);

Figure 8. Prototypes of Data Source Initialization and Reader Functions fin "tbl rdrs.h").

7.2.3. Adding Source Code for New "Table Look-up" Function

The source code for these two functions is not included in this text since details of how

they are implemented are not important (as long as the initialization function initializes the data

set in some manner and the result function is able to use that initialized data set to return the

correct lethality result). However, it is recommended that the source code for data initialization

and reader functions be placed in the directory $VLS_HOME/src/TblReaders and incorporated

into the directory's "makefile". It is required that the prototype for the reader and initialization

file be placed in the header file $VLS_HOME/src/TblReaders/tbl_rdrs.h (shown in Figure 8).

This is mandatory since "tbl_fmts.h" (Figure 6) requires the prototyped function names before

they may be included into the LookuP_Tbis [] array (Figure 6, lines 94 through 142). The

"tbl_rdrs.h" file is shown in Figure 8 with our two new initializer and reader functions added (in

bold text).

7.2.4. The Final Step in Adding New Table Look-up Functions (recompiling the server)

In order for these changes to take place, the server must be recompiled. This may be

accomplished by executing the "compile.sh" shell script outlined in Section 3.2. (This assumes

that the "makefile" in the $VLS_HOME/src/TblReaders directory has been modified to

incorporate the two new functions.) Following a successful recompilation, the server will be

equipped to handle V/L API queries for the newly added vulnerability methodology and data

source format.

Note, however, that in order to make such queries, an application program must be linked

directly with the server V/L library (i.e., a direct function call must be made to the server API

32

functions). We still have not provided a method for a remote client application to make queries

(for the newly created vulnerability methodology). To see how this is done, we examine our final

code modification section, Section 7.3.

7.3 Adding Remote Access for a New Vulnerability Methodology

In Figure 1, it is seen that the DIS Monitor is an application that directly calls functions in

the VL API layer (vi_binary_AriDis_ProbAii_NoNet () that we defined in Figure 5 would be

one such function). This section shows how a remote client (the client of Figure 1) is able to

have indirect access to the results from the same API. The steps are as follow:

1. Have the DIS Monitor monitor the virtual environment for important parameters.

2. Select a protocol syntax between the client and DIS Server.

3. Enable the DIS monitor to call the newly created VL APIs (to respond to client queries).

We cover these three steps in the next three sections.

7.3.1 Expanding the Environmental Monitoring Capability of the DIS Monitor

Because the server currently implements just the "MFK" vulnerability methodology for

munition type damage, the DIS monitor only monitors parameters required by that set of APIs.

(This means that the DIS monitor monitors entity state, fire, and detonation PDUs because these

are the only PDUs required by the V/L APIs to complete the "MFK" analysis for munition

damage.) However, in Sections 7.1 and 7.2, we have provided for a new vulnerability

methodology (BINARY) as a result of collision damage. APIs for this new methodology will

require an additional argument (the collision PDU). (Note that on line 71 of Figure 5 the collision

PDU is required to set the initial condition parameters for collision damage.)

The DIS monitor (see dis_mon(l) in Appendix B) watches DIS PDU traffic and maintains

records of PDUs that are of interest to it. The PDUs it finds interesting are those that are needed

for providing initial conditions for a vulnerability assessment. For instance, the API

"vl_mfkDIS_ProbAll()" needs four PDUs: the entity state PDU for the target, entity state for

the firer, the fire PDU, and detonation PDU (see vl(3) in Appendix B). The DIS monitor then

listens to PDU traffic, and whenever someone fires (via a fire PDU) or a munition detonates (via

the detonation PDU), it keeps a copy ofthat PDU, along with an entity state PDU of whoever

did the firing and whoever was targeted at the time (if known). The DIS monitor is then able to

call the API "vl mfkDIS_ProbAll()" and provide all the required parameters. It would then

33

generate results for the DIS server module via shared memory (see Figure 1 and vlserver(l) in

Appendix B). This same procedure should be followed for newly added APIs (such as the APIs

for our collision damage/BINARY methodology). We must modify the DIS monitor to monitor

the DIS network traffic (PDUs). It will have to keep records of parameters that could be used in

a query. It will then be ready to call V/L APIs when required.

Source code for the DIS monitor is given in the $VLS_HOME/src/DisMon/ directory. The

appropriate place to start modifying dis_mon(l) to listen for new parameters is in the file

"process_pdu.c", specifically in the function process _j?du_do () which is reproduced in Figure 9.

The portion of the code in bold has been added in order to keep records of collision PDUs.

The source code for the function Process_pdu_coii () that is called on line 60 is left as an

exercise for the student. All that process_£du_coli () has to do is store the collision PDU in a

data structure so that it can be retrieved for later use.

Unfortunately, this section of code will never be activated! This is because the DIS

manager (see dis_mgr(l) in Appendix B) is excluding all PDUs except those that we have stated

an interest in receiving (and we have not yet told the dis_mgr that we are interested in receiving

collision PDUs). To start receiving collision PDUs, we modify the DIS monitor function

"connect_to_dis_mgr()" (shown in Figure 10).

This section of the DIS monitor references the DIS manager library calls "dis_open()" and

"dis_register_pdu()." The latter call is where we need to add a provision for the collision PDUs

that we want to start monitoring. Lines 20 and 24 of Figure 10 show where we have provided for

collision PDUs (shown in bold text). Now when dis_register_pdu () is called on line 27, all

the PDU types seen (on lines 21 through 24) will be added to the list of PDU types that we are

registering with the DIS manager (i.e., the list of PDUs we want "see"; all other PDUs will be

excluded).

The DIS monitor is now able to monitor the virtual environment for parameters that are

important to initializing a collision damage analysis. It is also maintaining a record of those

parameters for later use in vulnerability calculations. We now turn our attention to how remote

clients may access a new damage type by querying the server.

34

1 /*
2 ~ process_pdu_do()
3 *
4 * int process_pdu_do(int indx, PDUJType type, char * pdu)
5 *
6 * handle a pdu (based on which type of pdu it is that we are
7 * handling)
8 ■k

9 * return TRUE if the pdu is to be freed (discarded).
» 10 * else return FALSE (if the pdu is being held somewhere).

11
12 */
13 int process_pdu_do(int indx, PDUJType type, char * pdu)
14 { char tmp[256];
15 int free_this_pdu;
16 static char *whoami="process_pdu_do()";
17 extern char *Dis_Pdu_Names[];
18
19 free_this_pdu = TRUE;
20
21 switch (type) {
22 case DL_NO_DATA:
23 /* buffer empty */
24 break;
25 case EntityStatePDUJType:
26 /*
27 * since we have already handle ES in process_pdu()
28 * there is nothing to do now.
29 */
30 free_this_pdu = process_pdu_es((EntityStatePDU *) pdu);.
31 break;
32 case FirePDU_Type:
33 /*
34 * allocate a location in the fire/detonation event list.
35 * (this list will contain the most recent
36 * EntityState PDUs for the firer,
37 * Target (if one) and for the detonation.
38 * These PDUs will remain stored and will not be
39 * freed.
40 v
41 free_this_pdu = process_pdu_fir((FirePDU *) pdu);
42 break;
43 case DetonationPDUJType:
44 /*
45 * add the detonation pdu into the fire/detonation event
46 * list.
47 */
48 free_this_pdu = process_pdu_det((DetonationPDU *) pdu);
49 break;
50
51 case CollisionPDU_Type:
52 /*
53 * We saw a Collision PDU. Keep it some where
54 * for later use as an argument to a VL API call.
55
56 * process_pdu_coll(); is a function that would store all
57 * collision pdu's in some data structure
58 * for later retrieval.

59 */
60 process_pdu_coll((CollisionPDU *) pdu);
61
62 free_this_pdu = FALSE; /* false since we need to keep a
63 * copy of this pdu

35

64 */
65 break;
66
67 default:
68 free_this_pdu = TRUE;
69 sprintf(trap
70 ,"%s:saw a pdu_type %d (%s)...do not know how to handle it.\n"
71 ,whoami
72 -type
73 ,Dis_Pdu_Names[type]
74);
75 fputs(tmp,stderr) ;
76 break;
77 }
78
79 return free_this_pdu;
80 }

Figure 9. Modifications of DIS Monitor to Listen for New PDU Tvpes

1
2
3
4

/*
- connect_to_dis_mgr()

* Establish a connection with the server on the specified machine.
5 */
6 int connect_to_dis_mgr(char *host)
7
8
9

{char pdu_list[256];

printf ("Connecting to DIS manager on %s.. An" ,host); fflush(stdout) ;
10 /*
11 * Open a connection to the dis_mgr server on machine host.
12 */
13 if (dis_open(host) == FALSE) {
14 return(-l); /* connection failure! exit */
15 } else {
16 printf("Successful!\n");
17 /*
18 * Register interest in PDUs.
19 */
20 sprintf(pdu_list," %d %d %d %d "
21 ,EntityStateRDUJType
22 ,FirePDUJType
23 ,DetonationPDUJType
24 ,CollisionPDU_Type
25);
26 printf("Sending : %s\n",pdu_list);
27 dis_register_pdu(pdu_list);
28 return(0);
29 }
30 }

Figure 10. Removing Collision From DIS Manager's PDU "Filtering".

7.3.2 Establishing a Protocol Between the Client and DIS Server

Figure 1 displays remote client applications communicating with the DIS server. The

vlserver(l) manual page in Appendix B explains the syntax for "MFK" queries. We will now

add the capability to make "BINARY" queries for collision damage. In the syntax of client-

36

server protocol established in the vlserver(l) manual page, we shall add new "QUERY" types.

Each query type will correspond to one of the new V/L APIs we listed in Table 4 (presumably,

we have already written all these APIs and added them to the V/L library). Figure 11 displays

"vls_toke.h" where we add new key words for the client-server simple query language. This file

and other vlserver source files are located in the $VLS_HOME/src/Server directory.

Changes made in vls_toke.h are shown in bold print. We added tokens to the _VL,s_Token

enumeration type for internal use, and corresponding ASCII strings to the VLS_TokenString array

for parsing an external query. Clients send query tokens in the form of an ASCII string; these strings

are then "tokenized" (the ASCII key words are converted to an internal numerical "token"

representation) by a simple parser in the vlsjoke.h file. Here, we added new query types (on lines

32 through 35 and 84 through 87 of Figure 11) to tell the server we wish to query for collision

damage and receive the answer in a BINARY vulnerability format. On lines 49 and 102, we are

accommodating arguments needed to complete this query. Specifically, when a query for collision

damage is made, the querying client shall reference a number that identifies which collision event is to

be evaluated. (DIS provides a unique identifier for each collision event on the virtual battlefield.) We

next modify the behavior of the DIS server (vlserver) to respond to the tokens we just defined. To

do this, we add to the function service_query_to_db() in the source code file

$VLS_HOME/src/Server/vlserver.c as shown in bold text in Figure 12.

The bold print text in Figure 12 was added to service_query_to_db () to allow the server

to understand and service the collision damage query. The query would be formatted by the

client in a manner similar to the ASCII string that is shown in Figure 13. (See the vlserver(l) in

Appendix B for how to format queries.)

The code segment shown in Figure 12 begins processing this query just after reading the key

word "QUERY". On lines 50 and 79, vls_tokenize () transforms the type of query

("TYPE_binaryCOLLisiON_ProbAii") and the arguments identifier ("ARGS_DIS_COLLISION_IDS")

into their equivalent tokens. On line 97, the tokenized argument identifier is used to drive a switch

statement. Since the tokenized value is equal to the enumeration T_ARGS_DIS_COLLISION_IDS, the

section of code from lines 148 through 192 is executed. There we see that six integers are scanned.

The first three represent the IDs of the target (or subject of our vulnerability analysis); the second

three integers ("4 5 6" in Figure 13) are the unique collision event ID. On lines 179 through 181,

these arguments and the token that identifies the type of query being made are placed in the shared

memory link between the DIS server (vlserver) and the DIS monitor (disjnon). (The manual page

37

1 /* $Id: vls_toke.h,v 0.20 1998/08/09 21:11:10 geoffs Exp geoffs $ */
2 #ifndef _TOKENS_H_
3 #define _TOKENS_H_
4 /* start tiny vls_tokenizer */
5 enum _VLS_Token {
6 T_ERROR
7 ,_T_START_OF_TOKENS
8
9 ,T_VLS_ECH0

10 ,T_HELP /* ask for help */
11 , TjffiLPl
12 , T_INFO_SERVER /* get admin info */
13 ,T_VLS_QUERY_SHMEM_ID /* ask for shared memory ID */
14 ,T_VLS_QUERY_PARSER_VER
15 ,T_VLS_QUERY_PARSER_VERSION
16 ,T_VLS_QUERY_DIS_VERSION
17
18 ,T_VLS_QUERY_TYPE /* expect the type of query
19 * to follow this vls_token
20 */
21
22 , T_START_OF_T_QTYPE_TOKENS
23
24 ,T_QTYPE_mfkDIS_Result /* Requested Format of Answer */
25 /T_QTYPE_mfkDIS_ProbAll
26 ,T_QTYPE_mfkDIS_ProbK
27 , T_QTYPE_mf kDIS_ProbMF
2 8 , T_QTYPE_mf kDIS_ProbF
29 ,T_QTYPE_mfkDIS_ProbM
30 ,T_QTYPE_mfkDIS_ProbNoDamage
31
32 ,T_QTYPE_binaryCOLLISION_Result /«BINARY vulnerability method*/
33 ,T_QTYPE_binaryCOLLISION_ProbAll /*for damage from collision*/
34 , T_QTYPE_binaryCOLLISION_ProbALIVE
35 ,T_QTYPE_binaryCOLLISION_ProbDEAD

36
37 ,__T_END_OF_T_QTYPE_TOKENS
38
3 9 , T_START_OF_T_QARGS_TQKENS
40
41 ,T_VLS_QUERY_TYPE_MFK_BINARY_PDUS /* expect binary pdu args */
42 , T_VLS_QUERY_TYPE_MFK_DIS_IDS /* expect ID args - implies
43 * we have to get the
44 * applicable pdus elsewhere
45 * (such as from shared
46 * memory)
47 v
48

49 ,T_ARGS_DIS_COLLXSION_IDS /* expect some ID args */

50
51 ,_T_END_OF_T_QARGS_TOKENS
52
53
54 ,_T_END_OF_TOKENS
55 };
56
57 typedef enum _VLS_Token VLSJToken;
58
59 static char *VLS_TokenString[] = {
60 "<*ERROR NOT A vls_token*>"
61 ,NULL
62 ,"ECHO"
63 ,"HELP"

38

64 ,"?■•
65 ,"INFO_SERVER"
66 ,"SHMID"
67 , "VER"
68 ,"VERSION"
69 ,"DIS_VERSION"
70
71 ,"QUERY"
72
73 , " T START OF T QTYPE TOKENS"/* start of query types-Not a vls_token
74 */
75
76 ,"TYPE_mfkDIS_Result"
77 ,"TYPE_mfkDIS_ProbAll"
78 ,"TYPE_mfkDIS_ProbK"
79 ,"TYPE_mfkDIS_ProbMF"
80 ,"TyPE_mfkDIS_ProbF"
81 ,"TYPE_mfkDIS_ProbM"
82 ,"TYPE_mfkDIS_ProbNoDamage"
83
84 ,"TYPE_binaryCOLLISION_Result" /»BINARY vulnerability method */
85 ,-TYPE.binaryCOLLISIO^ProbAll" /*for damage from collision*/
86 ,"TYPE_binaryCOLLISION_ProbALrVE"
87 ,"TYPE_binaryCOLLISION_ProbDEAD"
88
89 , " T END OF T QTYPE TOKENS"/* end of query types-Not a vls_token */
90
91 ," T START OF T QARGS TOKENS" /*start of argument types */
92
93 , "ARGS_mfkDIS_PDUS" /* expect binary pdu args *•/
94 , "ARGS_mfkDIS_IDS" /* expect ID args - implies
95 * we have to get the
96 * applicable pdus elsewhere
97 * (such as from shared
98 * memory) - not implemented.
99 * Tue Oct 14 15:02:14 EDT 1997

100 */
101
102 ,"ARGS_DIS_COLLISION_IDS" /* expect some ID args */
103
104 ," T END OF T QARGS TOKENS" /*end of arg types - not a vls_token */
105
106 ,NULL
107 }; /* the rest of vls_toke.h not shown...*/

Figure 11. Defining Client-Server Protocol (adding tokens to vls_toke.hV

mk_shm(3) in Appendix B describes the shared memory link between these two applications.) On

line 182, a flag is set to inform the DIS monitor (dis_mon(l)) that the vlserver has placed a query in

the shared memory link (and the vlserver is waiting for the answer to be returned). Vlserver then

enters a loop (between lines 216 and 227) waiting for dis_mon to return the result of the vulnerability

analysis. If an answer was successfully returned by disjnon, then on line 278 vlserver passes that

answer to the client who requested it in the first place. There is only one problem with all of this.

The DIS monitor does not yet know how to respond to this query type from the DIS server. In the

next section, we explain how disjmon is modified to accomplish this task.

39

1 /*
2 - service_query_to_db()
3
4 * static void service_guery_to_db(pc,query_id,rest_of_querY)
5
6 * Service a QUERY type command from the client:
7
8 * 1. Grab rest of query command arguments.
9 * 2. Place query and arguments into shared memory and set
10 * shared memory flag to let DisMonitor know
11 * that there is a query pending to be answered by the DisMonitor.
12 * 3. Wait for DisMonitor to answer the query or be timed out.
13 * 4. Return results to client.
14
15 */
16 void service_query_to_db(pc,query_id,rest_of_query)
17 struct pkg_conn *pc;
18 int query_id;
19 char *rest_of_query;
20 { int error, ch;
21 register char *ptr, *eot;
22 VLS_Token t, toke_query_type, toke_args_type ;
23
24 char *str_query_type, *str_args_type, *str_args_type_eot;
25 /* str_query_type str_args_type str_args_type_eot
26 * are used for making user-friendly error messages.
27 */
28 int query_placed, int_args_matched;
29 char error_msg_buff[1024];
30 char buf[1024];
31
32 error = 1;
33 query_placed = FALSE;
34 int_args_matched = FALSE;
35
36 if (pc!=NULL && rest_of_query != NULL) {
37
38 ptr = rest_of_query;
39
40 /*
41 * get next vls_token of command. - query type.
42 */
43 ptr = sscan_skip_white(ptr);/* skip white space characters */
44 eot = sscan_next_white(ptr);
45 if (eot != NULL) {
46 ch = *eot;
47 *eot='\0';
48 }
49
50 toke_query_type = vls_tokenize (ptr) ;
51
52 if (FALSE == vls_token_is_query_type(toke_query_type)) {
53 ++error;
54 s tr_query_type=ptr;
55 sprintf(error_msg_buff,"sytax error, unknown query type seen :%30s
56 ,str_query_type);
57 goto out; /* sytax error */
58 }
59
60 /*
61 * restore rest_of_query for scaning
62 */
63 if (ch != 0) {

40

64 *eot = ch;
65 }
66 ptr = eot;
67
68 /*
69 * get next vls_token of command. - args type.
70 */
71 ptr = sscan_skip_white(ptr);
72 str_args_type = ptr;
73 eot = sscan_next_white(ptr);
74 str_args_type_eot = eot;
75 if (eot != NULL) {
76 ch = *eot;
77 *eot='\0';
78 }
79 toke_args_type = vls_tokenize(ptr);
80
81 if (FALSE == vls_token_is_arg_type(toke_args_type)) {
82 ++error;
83 sprintf(error_msg_buff
84 ,"snytax error, unknown argument(s) identifier seen: %30s"
85 , str_args_type);
86 goto out; /* sytax error */
87 }
88
89 /*
90 * restore rest_of_query for scaning
91 v
92 if (ch != 0) {
93 *eot = ch;
94 }
95 ptr = eot;
96
97 switch (toke_args_type) {
98 int tgt_id[3],event_id[3], collision_id[3];
99

100 case T_VLS_QUERY_TYPE_MFK_DIS_IDS:
101 /* scan Tgt and Event ID (2 sets of (3 ints))*/
102 if (Verbose)
103 printf("***scanner sees Tgt and Event: %s\n",ptr);
104
105 if (6 != sscanf(ptr," %d %d %d %d %d %d \
106 &tgt_id[0], &tgt_id[l], &tgt_id[2],
107 &event_id[0], &event_id[l], &event_id[2]
108)
109) {
110 int_args_matched = FALSE;
111 ++error;
112
113 ch = *str_args_type_eot;
114 * str_args_type_eot='\0';
115
116 sprintf{error_msg_buff
117 ,"sytax error, expected 6 integers to follow \"%s\""
118 ,str_args_type
119);
120 *str_args_type_eot=ch;
121
122 break; /* syntax error expected 6 ints */
123 } else {
124 /* set shared memory */
125 int_args_matched = TRUE;
126 if (Verbose) {
127 printf("***puting to shm Tgt:%d %d %d

41

128 tgt_id[0], tgt_id[l], tgt_id[2]);
129 printf ("***puting to shm Event:%d %d %d ",
130 event_id[0], event_id[1], event_id[2]);
131 }
132
133 (void) shmSet_TargetID(tgt_id) ;
134 (void) shmSet_EventID(event_id);
135 (void) shmSet_QueryArgsType(toke_args_type) ;
136 (void) shmSet_QueryType(toke_query_type) ;
137 (void) shmClear_QueryAnswered();
138 if (1 == shmSet_QueryPlaced()) {
139 query_placed = TRUE;
140 } else {
141 ++error;
142 sprintf (error_.msg_.buff, "could not set share memory!");
143 ; /* error could not set share memory */
144 }
145 }
146 break;
147
148 case T_ARGS_DIS_COLLISION_IDS: /* expect some ID args */
149 /*
150 * We just saw ,,ARGS_DIS_COLLISION_IDS" in the query statement.
151 * Following this we expect to see three integers
152 * that together are the collision event ID
153 */
154 if { 6 != sscanf(ptr," %ä. %d %d Hd %d %d ",
155 &tgt_id[0], &tgt_id[l], _tgt_id[2],
156 _collision_id[0], _collision_id[l], _collision_id[2],
157);
158) {
159 int_args_matched = FALSE;
160 ++error;
161
162 ch = *str_args_type_eot;
163 *str_args_type_eot='\0';
164
165 sprintf(error_msg_buff
166 ,"sytax error, expected 6 integers to follow \"%s\""
167 ,str_args_type
168);
169 *str_args_type_eot=ch;
170
171 break; /* syntax error expected 6 ints */
172 } else {
173 /* set shared memory */
174 int_args_matched = TRUE;
175 if (Verbose) {
176 printf("***puting to shm collision ID:%d %d %d ",
177 collision_id[0], collision_id[l], collision_id[2]);
178 }
179 (void) shmSet_TargetID(tgt_id);
180 (void) shmSet_EventID(collision_id);
181 (void) shmSet_QueryType(toke_query_type);
182 (void) shmClear_QueryAnswered();
183 if (1 == shmSet_QueryPlaced()) {
184 query_placed = TRUE;
185 } else {
186 ++error;
187 sprintf(error_msg_buff,"could not set share memory!");
188 ; /* error could not set share memory */
189 }
190 }
191

42

192 break;
193
194 case T_VLS_QUERY_TYPE_MFK_BINARY_PDUS: /* not implemented yet */
195 default:
196 ++error;
197 sprintf(error_msg_buff,"unsupported query type");
198 break;
199 }
200
201 if (query_placed == TRUE) {
202 static struct timeval timeout;
203 int polls;
204 int answered;
205 /*
206 * query is placed,
207 * Now wait for DisMonitor to answer the query.
208 */
209 polls = 0;
210
211 Db_TimedOut_Clear (); /* set Db_Timedout==FALSE and start timer */
212 /*
213 * when timer goes off, then
214 * Db_Timedout is set to TRUE;
215 */
216 while((l!=shmSet_QueryAnswered()) && (FALSE==Is_Db_TimedOut())) C
217 /*
218 * sleep a short time
219 */
220 timeout.tv_sec=0;
221 timeout.tv_usec= SERVER_DB_POLLING ; /* sleep for
222 * SERVER_DB_POLLING
223 * nu-cro seconds
224 */
225 select(NullFile_fd , (fd_set *)NULL, (fd_set *)NULL,
226 (fd_set *)NULL, Sctimeout);
227 }
228 answered=shmGet_QueryAnswered();
229
230 if (Verbose) {
231 if (answered==l) {
232 printf("server query answered after about %7.3f seconds\n"
233 , ((double) (polls*SERVER_DB_POLLING))/ 1000.);
234 } else {
235 printf (
236 "server query NOT answered after %7.3f seconds (and %d polls).\n"
237 , ((double) (DB_TIMEOUT))/l.e+06
238 , polls);
239 }
240 }
241
242 if (answered) {
243 /*
244 * Read answer from shared memory.
245 */
246
247 error = FALSE; /* Success - finally */
248
249 } else {
250 ++error; /* ERROR! query timeout! */
251 sprint f(error_msg_buf f,
252 "Timed-out waiting for VL DataManager response.");
253 }
254 } else if (FALSE == shmlsAttached()) {
255 ++error;

43

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

sprintf(error_msg_buff,
"VL server internal error: could not place query into shared memory!");

} else if (FALSE == int_args_matched) {
; /* leave error message as is - it describes #of ints expected */

} else { /* UNKNOW ERROR - hopefully never will get here */
++error;
sprintf(error_msg_buff,

"VL server internal error: could not propperly process query!");

}

out:

if (error) {
int len;

char msg[128];
if (Verbose)

printf("Query not understood from client %d\n",pc->pkc_fd);
sprintf(msg,"%d: VLS ERROR. %s",query_id,error_msg_buff);
len=strlen(msg)+l; /* add 1 to also send the NULL terminator*/

(void) pkg_send(VL_MSG_TO_CLIENT,msg,len,pc);
} else {

if (TRUE != send_query_answer(pc,query_id,toke_query_type)) {
/* error could not read shared memory
* or else could not send client the answer...
* But is almost certainly is the later,
* since we already tested for shm writing
* when query_placed was set to true.
V

printf("*** server could not send to client %d (query %d)!!!\n"
,pc->pkc_fd,query_id) ;

Figure 12. Enabling vlserver to Parse a New Query Type fservice query to dbQl

"123 QUERY TYPE_binaryCOLLISION_ProbAll ARGS_DIS_COLLISION_IDS 12 3 4 5 6

Figure 13. Sample ASCTT Query String fsent to the vlservef).

7.3.3. Remote Access to New VL APIs (responding to client queries)

In addition to monitoring the DIS environment (and storing certain PDUs for later use), the

DIS monitor also periodically monitors the shared memory link (mk_shm(3) in Appendix B) for new

queries placed by the vlserver. When it discovers that a query is pending, disjmon uses the function

vls_link_service_query{) to service the query. Changes in vls_link_service_query() that

address collision damage queries (using the BINARY vulnerability methodology) are shown in bold

text in Figure 14. This function and other DIS monitor source code is located in the

$VLS HOME/src/DisMon directory.

44

1 /*
2 - vls_link_service_guery()
3
4 * int vls_lirik_service_query(void);
5
6 * Extract the VL server query and attempt to service it.
7 * If serviced the query result is place in shared memory.
8 * (A successful service includes placing indicators into
9 * shared memory which tell the server to return an error
10 * message to the client.)
11
12 * returns 1 (TRUE) if success (in placing the query into shared memory).
13 * 0 (FALSE) if unsuccess.
14
15 */
16 int vls_link_service_query(void)
17 { VLS_Token ans_t, args_t;
18 int ret;
19 static char *whoami="vls_link_service_query()";
20
21 ret = FALSE;
22
23 _rpt_error(_RE_CLEAR_ERRORS,NULL); /* clear error flags in rpt_perror*/
24 args_t = shmGet_QueryArgsType();
25 ans_t = shmGet_OueryType(); /* called by DisMonitor */
26
27 switch (args_t) {
28 case T_VLS_QUERY_TYPE_MFK_DIS_IDS:
29 ret = vls_link_serve_mfkDIS_IDS(ans_t);
30 break;
31 case T_ARGS_DIS_COLLISION_IDS:
32 ret = vls_link_serve_binaryCollision_DIS_IDS(ans_t);
33 break;
34 default:
35 cprint(CH_ERR,"%s: cannot handle \"%s\" (%d) arguments in query\n"
36 ,whoami
37 ,vls_token_name(args_t)
38 ,args_t
39);
40 break;
41 }
42
43 shmClear_QueryPlaced(); /* clear query pending flag */
44 shmSet_QueryAnswered (); /* set query answered flag */
45
46 return(ret);
47 >

Figure 14. Change Tin dismon") to Accept New Queries.

Figure 14 shows on line 32 that the type of query is passed (via the variable ans_t) to a

function that calls the appropriate VL API routines and returns the results. That function

"vis_iink_serve_binaryCoiiision_Dis_iDS ()" is shown in Figure 15. This whole function

would have to be written since it does not yet exist.

45

1 /*
2 - vls_link_serve_binaryCollision_DIS_IDS()
3
4 * static int vls_link_serve_binarYCollision_DIS_IDS(VLSJToken ans_t)
5
6 * Service a query for a collision damage using BINARY methodology.
7 * return 1 (TRUE) if successful in placing the query into shared memory.
8 * 0 (FALSE) if not.
9 v
10 static int vls_link_serve_binaryCollision_DIS_IDS(VLSJToken ans_t)
11 { DisID entityID[3], eventID[3];
12 int i, fig, ret, set_err_msg, int3[3];
13 VL_Result result;
14 float *probspace;
15 double prob;
16 static const char *whoami="vls_link_serve_binaryCollision_DIS_IDS()";
17 static char answer_buff[128];
18 VLSetParam_t DmgJType;
19
20 set_err_msg = FALSE;
21 ret = FALSE;
22
23 /* get entity and event ID'S */
24 (void) shmGet_TargetID(int3);
25 for (i=0; i<3; i++)
26 entitylD[i] = (DisID) int3[i]; /* int16 = int */
27 (void) shmGet_EventID(int3);
28 for (i=0; i<3; i++)
29 eventID[i] = (DisID) int3[i];
30 printf ("%s:IDs are: %d %d %d %d %d %d\n", whoami
31 ,entityID[0]
32 ,entityID[l]
33 ,entityID[2]
34 ,eventID[0]
35 ,eventID[l]
36 ,eventID[2]
37);
38 Dmg_Type = VL_PARAM_SET_COLLISION;
39 switch(ans_t) {
40 case T_QTYPE_binaryCOLLISION_Result: /* Requested Format of Answer */
41 result = vl_binary_DIS_Result(
42 &flg, DmgType, entitylD ,eventID);
43 if (flg!=0) /* result not from found table */
44 set_err_msg = TRUE;
45 ret = shmSet_VLResult(result,fig); /* called by DisMonitor */
46 break;
47 case T_QTYPE_binaryCOLLISION_ProbAll:
48 probspace = vl_binary_DIS_ProbAll (Dmg_Type, entitylD, eventID);
49 if (probspace==NULL) /* a type of error */
50 set_err_msg = TRUE;
51 ret = shmSet_binaryPS (probspace); /* called by DisMonitor */
52 break;
53 case T_QTYPE_binaryCOLLISION_ProbDEAD:
54 prob = _vl_binary_DIS_ProbDEAD(Dmg_Type, entitylD, eventID);
55 goto set_prob;
56 break;
57 case T_QTYPE_binaryCOLLISION_ProbALIVE:
58 prob = _vl_binary_DIS_ProbALIVE (Dmg_Type, entitylD, eventID);
59 goto set_prob;
60 break;
61 set_prob:
62 if (prob<0.) /* a type of error */
63 set_err_msg = TRUE;

46

64 ret = shmSet_prob(prob); /* called by DisMonitor */
65 break;
66 default:
67 ret = FALSE;
68 cprint(CH_ERR, "%s: cannot handle %s vl result in query\n"
69 ,whoami
70 /vls_token_name(ans_t));
71 sprintf<answer_buff,"**DB Handler ERROR");
72 break;
73 }
74
75 if (set_err_msg == TRUE) {
76 char *b, buff[256];
77
78 /* Place error msg in shm (to be sent by server to client) */
79 /*
80 * this is enough info:
81 * shmSet_ErrorMsg(rpt_error_getMsg());
82
83 * but the following is even more info:
84 */
85 memset(buff,0,sizeof(buff));
86 strncpy(buff,rpt_error_getMsg() , sizeof(buff));
87 buff[sizeof(buff)-1]='\0';
88 /*
89 * See if there is more to report that sheds light on the error
90 * (that is more than the standard error msg).
91 v
92 if (NULL != (b= _rpt_error_getLastAddedMsg())) {
93 int len;
94 len = strlen(buff);
95
96 if (len+3 < sizeof(buff)) { /* add ". " */
97 strcpy(buff+len,". ");
98 len+=2;
99 }

100 strncpy(buff+len,b,sizeof(buff)-len); /* add extra msg*/
101 buff[sizeof(buff)-len-1]='\0';
102 }
103 shmSet_ErrorMsg(buff);
104 }
105 return (ret);
106 }

Figure 15. A Function to Process Collision Damage Queries fusing BINARY method!

The first thing to notice about "vls_link_serve_binaryCollision_DIS_IDS ()" is that it

derives the arguments from the shared memory link between disjmon and the vlserver. This is

seen on lines 24 and 27 where the ID of the entity whose damage we are assessing and the ID of

the collision event that causes the damage are retrieved. The switch statement on line 39 is used

direct the program to call whichever V/L API will return the answer in a format that appropriately

reflects the client's query. If you have a keen eye, then you may have noticed that the function

"shmset_binaryps ()" called on line 50 does not yet exist (and was not listed under the shared

memory library calls shown in the mk_shm(3) "man" page in Appendix B). This function would

have to be written, along with the corresponding "shmGet_binaryPS ()", and a space in the shared

47

memory area would have to be allocated to store the data. This is because room is allocated in

shared memory for the existing "MFK" methodology probability space, but there is no room as

yet for our newly defined "BINARY" vulnerability method. Fortunately, there is only enough

room for two floating point numbers (one for each of the outcomes we defined as possible for or

BINARY probability space) (namely, PS_BINARYJDEAD and PS_BINARY_ALIVE as we defined in

Figure 3, lines 42 and 43). Another thing missing from Figure 15 is the VL APIs that we call. We

do have some VL APIs defined for the BINARY methodology (as shown in Table 4), but those

APIs require PDUs as their arguments. However, the V/L APIs shown in Figure 15

(vl_binary_DIS_Result (), vl_binary_DIS_ProbAll (), _vl_binary_DIS_ProbDEAD (), and

_vi_binary_Dis_ProbALiVE ()) all require DIS "IDs" as arguments. Fortunately, writing these

functions is fairly straightforward. Remember that the DIS monitor is keeping track of all PDUs of

interest. It is simply a matter of finding the PDUs that are associated with the given IDs and then

using those PDUs as arguments to the V/L APIs that are not defined. Those defined V/L APIs

(Table 4 and Figure 5) use PDUs as arguments to initialize the vulnerability analysis, and therefore,

we simply call them and return their results. If further assistance is required, the source code for

any of the "MFK" "DIS-ID" functions may be examined. (These are the functions:

vl_mf kDIS_Result (), vl_mf kDIS_ProbAll (), _vl_mf kDIS_ProbK (), _vl_mf kDIS_ProbMF (),

_vl_mf kDIS_ProbF () , _vl_mf kDIS_ProbM () , and _vl_mf kDIS_ProbNoDamage ().) The source

code is given in the file $VLS_HOME/src/viapi/vi_dis .c.

Notice in Figure 15 that the results of these VL APIs (assuming they are eventually written)

are placed directly into shared memory (on lines 45, 51, and 64). The DIS server will retrieve them

from there and pass them to the client who originally asked for the analysis, thus completing the

remote query.

8. SUMMARY

To review, in Section 3 we showed how to unpack, install, and compile the DIS lethality

server, as well as make some initial test runs.

We then explained the overall architecture of the server and the disposition of its major modules

in Section 4. Section 5 described the data files needed to initialize the server and their location.

Section 6 explained how client applications may connect to the server and pose remote queries.

48

In Section 7, we showed in detail how the server may be expanded to service just about any

vulnerability methodology (beyond just "MFK") and how it could be used to describe damage

derived by other mechanisms (beyond just "munitions").

49

INTENTIONALLY LEFT BLANK

50

REFERENCES

1. IEEE Computer Society. "Standard for Distributed Interactive Simulation-Application
Protocols." IEEE Standard 1278.1-1995, Institute of Electrical and Electronics Engineers, Inc.,
NY, 1995.

2. Institute for Simulation and Training. "Enumeration and Bit Encoded Values for Use with
Protocols for Distributed Interactive Simulation Applications." IST-CF-97-23 (Section
4.3.1.1, Platforms of the Land Domain), Institute for Simulation and Training, Orlando, FL,
3 June 1997.

3. Sauerborn G.C. Proceedings of the Second International Workshop on Distributed Interactive
Simulation and Real Time Applications. "The DIS Lethality Communications Server." IEEE
Computer Society, pp. 82-87, 1998 (ISBN 0-8186-8594-8).

4. Sauerborn, G.C. "Communicating Platform Vulnerability in a Distributed Environment."
Paper: 98F-SIW-130, Simulation Interoperability Workshop Papers, The Simulation
Interoperability Standards Organization (SISO), pp. 809-815, September 1998.

5. Deitz, P.H., et al. "The Generation, Use, and Misuse of 'PKS' in Vulnerability/Lethality
Analysis." ARL-TR-1640, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD,
1997.

6. Roach, Lisa K. "A Methodology for Battle Damage Repair (BDR) Analysis." ALR-TR-330,
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1994.

7. Walbert, J.N., et al. "Current Directions in the Vulnerability/Lethality Process Structure."
ARL-TR-296, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1993.

8. Roach, L.K. "Fault Tree Analysis and Extensions of the V/L Process Structure." ARL-TR-
149, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1993.

51

INTENTIONALLY LEFT BLANK

52

APPENDIX A

INITIAL COMPILATION'S SAMPLE OUTPUT

53

INTENTIONALLY LEFT BLANK

54

INITIAL COMPILATION'S SAMPLE OUTPUT

Sample output from compilation script $VLS_HOME/compile.sh is given here. Warnings and

other messages will vary, depending on which compiler and operating system are used. The

output from this example was generated using a Silicon Graphics®, Incorporated (SGI) IRIXT

5.3 OS with SGFs ANSI C compiler (v3.19).

^TM

> ./compile.sh
starting in /usr/people/geoffs/Lserver
 libs
cd src/Libs/CommaDelim
make CC=cc RANLIB=echo install

cc -g -c -I. -c cdf.c
ar urv libcdf.a cdf.o '

a - cdf.o
s - creating archive symbol table. Wait...
s- done
/usr/lib/ar: Warning: creating libcdf.a

echo libcdf.a
libcdf.a

cp libcdfa ../../../lib/
cp cdf.h ../../../include

cd /usr/people/geoffs/Lserver
cd src/Libs/cprintf
make CC=cc RANLIB=echo install

cc -DANSIIC -c cprint.c
ar urv libcprint.a cprinto

a - cprint.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libcprinta

echo libcprint.a
libcprint.a

cp libcprint.a ../../../lib/
cp cprint.h ../../../include

cd /usr/people/geoffs/Lserver
cd src/Libs/Scanner
make CC=cc RANLIB=echo install

cc -c -g -c scanner.c
ar urv übscanner.a scanner.o

a - scanner.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libscanner.a

echo libscanner.a
libscanner.a

rm scanner.o
rm -f ../../../lib//libscanner.a
cp libscanner.a ../../../lib/
chmod -w ../../../lib//libscanner.a
chmod ugo+r ../../../lib//libscanner.a
cp -p scanner.h ../../../include/scanner.h

cd /usr/people/geoffs/Lserver
cd src/Libs/Matrx
make CC=cc RANLIB=echo install

cc -g -c -c matrx.c
cc -g -c -c disXforms.c
ar urv libmatrx.a matrx.o disXforms.o

a - matrx.o
a - disXforms.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libmatrx.a

-DANSIIC -g -I../../../include -I../../../include/H -c

-DANSIIC -g -I../../../include -I../../../include/H -c

rm matrx.o disXforms.o
rm -f ../../../lib/libmatrx.a
mv libmatrx.a ../../../lib/libmatrx.a
chmod -w ../../../lib/libmatrx.a
chmod ugo+r ../../../lib/libmatrx.a
cp -p matrx.h ../../../include

cd /usr/people/geoffs/Lserver
cd src/Db/TblReaders
make CC=cc RANLIB=echo install

cc -DANSIIC -g -I../../../include -I../../../include/H -c
iua_ke.c

cc ■
iuajieat.c

cc ■
others.c

ar urv libtbl_rdrs.a iua_ke.o iua_heat.o others.o
a - iua_ke.o
a - iua_heat.o
a - others.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libtbl_rdrs.a

echo libtbl_rdrs.a
libtbl_rdrs.a

cp libtbl_rdrs.a ../../../lib/
cp tbl_rdrs.h ../../../include
rm libtbl_rdrs.a

cd /usr/people/geoffs/Lserver
cd src/VLapi
make CC=cc RANLIB=echo install

cc -I../../include -g -c -I../Libs/DIS/include
cc -I../../include -g -c

vl_bnry.c
cc -I../../include

vl_dis.c
ar urv libvl.a vl.o vl_bnry.o vl_dis.o

a - vl.o
a - vl_bnry.o
a - vl_dis.o
s - creating archive symbol table. Wait...
s- done
/usr/lib/ar: Warning: creating libvl.a

>I../Db/ -c vl.c
I../Libs/DIS/include -I../Db/ -c

•g -c -I../Libs/DIS/include -I../Db/ -c

echo libvl.a
libvl.a

cp libvl.a ../../lib
cp vl.h ../../include
rm libvl.a

cd /usr/people/geoffs/Lserver
DIS manager is made a little differently :
/usr/people/geoffs/Lserver
cd src_sgi5.3/LIB
make CC=cc

cc -g -DBSD -c log.c
cc -g -DBSD -c pdu.c

cfe: Warning 665: pdu.c, line 607: Modified an rvalue.

55

((ArticulatParamsNode *)*n) = (ArticulatParamsNode
*)0

cfe: Warning 665: pdu.c, line 610: Modified an rvalue.
((SupplyQtyNode *)*n) = (SupplyQtyNode *) 0 ;
_A

cfe: Warning 665: pdu.c, line 613: Modified an rvalue.
((VarDatumNode *)*n) = (VarDatumNode *) 0 ;
.A

cfe: Warning 665: pdu.c, line 616: Modified an rvalue.
((FixedDatumNode *)*n) = (FixedDatumNode *) 0 ;

cfe: Warning 665: pdu.c, line 619: Modified an rvalue.
((VarDatumValue *)*n) = (VarDatumValue *) 0 ;

cfe: Warning 665: pdu.c, line 622: Modified an rvalue.
((QueryDatumValueNode *)*n) =

(QueryDatumValueNode *) 0 ;
_A

cfe: Warning 665: pdu.c, line 629: Modified an rvalue.
((TrackJam *)*n) = (TrackJam *) 0 ;

cfe: Warning 665: pdu.c, line 632: Modified an rvalue.
((BeamDesc *)*n) = (BeamDesc *) 0 ;

 _A

cc -g -DBSD -c pkgx
cc -g -DBSD -c print.c
cc -g -DBSD -c byte Jnd.c

cfe: Warning 709: bytejmd.c, line 2027: Incompatible pointer type
assignment

u32_ptr = ptr;

cc -g -DBSD -c dis_client.c
cc -g -DBSD -c client_pdu_utils.c
cc -g -DBSD -c coords.c
cc -g -DBSD -c utm.c
ar urv libdis.a log.o pdu.o pkg.o print.o byte_bnd.o

dis_client.o client_pdu_utils.o coords.o utm.o
a - log.o
a - pdu.o
a - pkg.o
a - print.o
a - byte_bnd.o
a - dis_client.o
a - dient_pdu_utils.o
a - coords.o
a - utm.o
s - creating archive symbol table. Wait...
s - done
/usr/Iib/ar: Warning: creating libdis.a

cc -g -DBSD -c dis_server.c
cc -g -DBSD -c mgr_pdu_utils.c
ar urv libdismgr.a log.o pdu.o pkg.o print.o byte_bnd.o

dis_server.o mgr_pdu_utils.o
a - log.o
a - pdu.o
a - pkg.o
a - print.o
a - byte_bnd.o
a - dis_server.o
a - mgr_pdu_utils.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libdis_mgr.a

cc -g -DIGN_SIGIO -DSGI -c server.c
cc -g -DIGN_SIGIO -DSGI dis_mgr.o client_rout.o net.o

server.o ../LIB/Iibdis_mgr.a -lm -o dis_mgr
cd../..
cd src_sgi5.3/CLIENT
make CC=cc

cc -g -cckr -c client.c
cc-g-cckr client.o ../LIB/libdis.a-lm -o client

cd../..
cd src_sgi5.3/PLAYBACK
make CC=cc

cc -g -DDEBUG -DSYS5 -c playbackx
cc -g -DDEBUG -DSYS5 playbacks ../LIB/libdis.a -lm

-o playback
cd../..
cd src_sgi5.3/UTIL
make CC=cc

cc -g -DDEBUG -DSYS5 -c btoa.c
cc -g -DDEBUG -DSY§5 btoa.o ../LIB/libdis.a -o btoa

cd ../..
cd src_sgi5.3/UTIL/ByteBound
make CC=cc

cc -I../../H -g -DMAIN -c byte_bnd.c
cfe: Warning 709: bytejmd.c, line 2027: Incompatible pointer type
assignment

u32 _ptr = ptr;

cc bytejnd.o -L../../LIB -ldis
a.out

DISLIB: byteJounds_pr() unknown "OtherPDU" 0

byte boundaries for pdu type 1: Entity StatePDU
11114 2 112 2
2 1 1 1 1 2 1 1 1 1
1 1 2 1 1 1 1 4 4 4
8 8 8 4 4 4 4 1 1 1
1 1 1 1 1 1 1 1 1 I
1 1 1 4 4 4 4 4 4 1
1 1 1 1 1 1 1 1 1 1
1 4 -l<varparams start>

byte boundaries for pdu type 2: FirePDU
1 1 1 1 4 2 1 1 2 2
2 2 2 2 2 2 2 2 2 2
1 1 1 1 8 8 8 1 1 2
1 1 1 1 2 2 2 2 4 4
4 4

byte boundaries for pdu type 3: DetonationPDU
11114 2 112 2
2222222222
4 4 4 8 8 8 112 1
1 1 12 2 2 2 4 4 4
1111 -l<varparamsstart>

byte boundaries for pdu type 4: CollisionPDU
11114 2 112 2
22222221 14
4 4 4 4 4 4

byte boundaries for pdu type 5: ServiceRequestPDU
11114 2 112 2
2 2 2 2 11 1 1 -Kvar params start>

cd../..
cd src_sgi5.3/MGR
make CC=cc

cc-g
cc-g
cc -g

DIGNJ5IGIO -DSGI -c dis_mgr.c
DIGNJ5IGIO -DSGI -c client_rout.c
DIGN SIGIO -DSGI -c net.c

byte boundaries for pdu type 6: ResupplyOfferPDU
11114 2 112 2
2 2 2 2 1111 - l<var params start>

56

byte boundaries for pdu type 7: ResupplyReceivedPDU
11114 2 112 2
2 2 2 2 1 1 1 1 -Kvar params start>

byte boundaries for pdu type 8: ResupplyCancelPDU
11114 2 112 2
2 2 2 2

byte boundaries for pdu type 9: RepairCompletePDU
11114 2 112 2
2 2 2 2 2 1 1

byte boundaries for pdu type 10: RepairResponsePDU
11114 2 112 2
2 2 2 2 1111

byte boundaries for pdu type 11: CreateEntityPDU
11114 2 112 2
2 2 2 2 4

byte boundaries for pdu type 12: RemoveEntityPDU
11114 2 112 2
2 2 2 2 4

byte boundaries for pdu type 13: StartResumePDU
11114 2 112 2
222244444

byte boundaries for pdu type 14: StopFreezePDU
11114 2 112 2
2 2 2 2 4 4 1111
4

byte boundaries for pdu type 15: AcknowledgePDU
11114 2 112 2
2 2 2 2 2 2 4

byte boundaries for pdu type 16: ActionRequestPDU
11114 2 112 2
22224444 -l<var params start>

byte boundaries for pdu type 17: ActionResponsePDU
11114 2 112 2
22224444 -Kvar params start>

byte boundaries for pdu type 18: DataQueryPDU
11114 2 112 2
22224444 -Kvar params start>

byte boundaries for pdu type 19: SetDataPDU
11114 2 112 2
2 2 2 2 4 11114
4 -Kvar params start>

byte boundaries for pdu type 20: DataPDU
11114 2 112 2
2 2 2 2 4 11114
4 -Kvar params start>

byte boundaries for pdu type 21: EventReportPDU
11114 2 112 2
2 2 2 2 4 11114
4 -Kvar params start>

byte boundaries for pdu type 22: MessagePDU

11114 2 112 2
2 2 2 2 1 1 1 14 -Kvar params start>

DISLIB: byte_bounds_pr() unknown
"ElectromagneticEmissionsPDU" 23
DISLIB: byte_bounds_pr() unknown " '24

byte boundaries for pdu type 25: TransmitterPDU
11114 2 112 2
2 2 8 11118 8 8
4442284482
2 1111 -Kvar params start>

byte boundaries for pdu type 26: SignalPDU
11114 2 112 2
2 2 2 2 4 2 2 -Kvar params start>

byte boundaries for pdu type 27: ReceiverPDU
1 1 114 2 1 1 2 2
2221142222

byte boundaries for pdu type 28: DesignatorPDU
11114 2 112 2
2222211444
4 4 8 8 8

DISLIB: byte_bounds_pr() unknown "CommentPDU" 29
DISLIB: byte_bounds_pr() unknown "NO SUCH DEFINED PDU"
30
DISLIB: byte_bounds_pr() unknown "NO SUCH DEFINED PDU"
31
cd../..
UX:mkdir: ERROR: Cannot create directory "lib": File exists
UX:mkdir: ERROR: Cannot create directory "bin": File exists
UX:ls: ERROR: Cannot access lib/libdis.a: No such file or directory
src/Libs/DIS/lib/libdis.a
 data manager

ar urv libtbl_rdrs.a iua_ke.o iua_heat.o others.o
a - iua_ke.o
a - iua_heat.o
a - others.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libtbl_rdrs.a

echo libtbl_rdrs.a
libtbl_rdrs.a

cp libtbl_rdrs.a ../../../lib/
cp tbl_rdrs.h ../../../include
rm libtbl_rdrs.a
cc -I../../include -g
cc -I../../include -g
cc -I../../include -g
cc -I../../include -g
cc -I../../include -g

-I../Libs/DIS/include -c db_entity.c
-I../Libs/DIS/include -c db_entmem.c
-I../Libs/DIS/include -c strlink.c
-I../Libs/DIS/include -c db_init.c
-I../Libs/DIS/include -c util.c

cc -I../../include -g -c -I../Libs/DIS/include -c misc.c
cc -I../../include -g -c -I../Libs/DIS/include -c metatbls.c

-I../Libs/DIS/include -c db.c
-I../Libs/DIS/include -c meta_mem.c
-I../Libs/DIS/include -c tiny_url.c
-I../Libs/DIS/include -c tbl_fmts.c
-L./Libs/DIS/include -c vlparam.c
-I../Libs/DIS/include -c vl_meth.c

ar urv libvldb.a db_entity.o db_entmem.o strlink.o db_init.o
util.o misc.o metatbls.o db.o meta_mem.o tiny_url.o
tbl_fmts.o vlparam.o vl_meth.o
a - db_entity.o
a - db_entmem.o
a - strlink.o
a - db_init.o
a - util.o

cc -I../../include -g -c
cc -I../../include -g -c
cc -I../../include -g -c
cc -I../../include -g -c
cc -I../../include -g -c
cc -I../../include -g -c

57

a - misc.o
a - metatbls.o
a - db.o
a - meta_mem.o
a - tiny_url.o
a - tbl_fmts.o
a - vlparam.o
a - vI_meth.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libvldb.a

DIS lethality server finished
installing libs and header files
in $VLS_HOME/lib and $VLS_HOME/include.
set SVLSJHOME to: /usr/people/geoffs/Lserver

echo libvldb.a
libvldb.a

cp libvldb.a ../../lib
cp vl_meth.h ../../include
rm libvldb.a
 TCP Lethality Server

cc -g -DBSD -I../../include -I../../include/H/LIB
-I../../include -c clientjib.c

cc -g -DBSD -I../../include -I../../include/H/LIB
-I../../include -c pkg.c

ar urv libvlsclient.a clientjib.o pkg.o
a - clientjib.o
a - pkg.o
s - creating archive symbol table. Wait...
s - done
/usr/lib/ar: Warning: creating libvlsclient.a

echo libvlsclient.a
libvlsclienta

cp libvlsclient.a ../../lib
cp vlsjoke.h vlserver.h mk_shm.h ../../include
cc -g -DBSD -I../../include -I../../include/H/LIB

-I../../include -c server.c
cc -g -DBSD -I../../include -I../../include/H/LIB

-[../../include -c mk_shm.c
cc -g -DBSD -I../../include -I../../include/H/LIB

-I../../include -c serverjib.c
cc -o server.exe -g -DBSD -I../../include

-I../../incIude/H/LIB -I../../include server.o pkg.o mk_shm.o
serverjib.o -L../../lib -lscanner -Icprint -lvlsclient

cc -g -DBSD -I../../include -I../../include/H/LIB
-I../../include -c client.c

cc -o client.exe -g -DBSD -I../../include
-I../../include/H/LIB -I../../include client.o -lvlsclient -L.I
 DIS monitor

cc -c -I../../include/H -I../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER Main.c

cc -c -I../../include/H -I../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER dis_misc.c

cc -c -I../../include/H -I../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER processjdu.c

cc -c -I../../include/H -I../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER usrcmd.c

cc -c -I../../include/H -I../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER munitions.c

cc -c -I../../include/H -I../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER entjist.c

cc -c -I../../include/H -I../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER fire_det.c

cc -c -I../../include/H -I../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER mk_shm.c

cc -c -I../../include/H -I../../include/H/LIB -I../..//include -g
-DNOCURSES -DCONNECT_TO_VL_SERVER vlsjink.c

cc -o dis_mon.exe -g -DNOCURSES
-DCONNECT_TO_VL_SERVER Main.o dis_misc.o process_pdu.o
usrcmd.o munitions.o entjist.o fire_det.o mk_shm.o vlsjink.o
-L../..//lib -ldis -Icprint -leurses -lm -lvlsclient -lvldb -lvl -ltbl_rdrs
-lscanner -lmatrx -lcdf
UX:rm: ERROR: Cannot access
/usr/people/geoffs/Lserver/bin/*.exe: No such file or directory

58

APPENDIX B

MANUAL "MAN" PAGES

59

INTENTIONALLY LEFT BLANK

60

MANUAL "MAN" PAGES

These manuals are presented in the UNIX™ "man page" format. The directory

$VLS_HOME/doc/ contains these manuals in "man" page (.man) format. In addition, there are

versions in Hypertext Markup Language (HTML) (.html), PostScript (.ps), plain text (.txt), and

rich text format (.rtf).

The man pages are presented in alphabetical order:

cdf(3)
cprint(3)
db(3)
dis_mon(l)
dismgr(l)
matrx(3)
mk_shm(3)
scanner(3)
vl(3)
vlparam(3)
vls_db_init(5)
vlsclient(3)
vlserver(l)

The "(1)", "(3)", and "(5)" delineations are conventions used for "man" pages. These indicate

the general category of application that the manual addresses.

Some variants of UNIX™ stray from this numbering scheme (e.g., IRIX™ and Sun Solaris®

use "(4)" to describe file formats instead of "(5)"). In general, these are the applied manual

section numbers:

Section "(1)" man pages are for applications and user commands.
Section "(2)" indicates an operating system level library call.
Section "(3)" manuals are for user library calls (such as math library functions, etc.)
Section "(4)" manuals document devices (such as memory, tape, etc).
Section "(5)" manuals describe file formats.
Section "(8)" are for "miscellaneous" other things (such as a man page describing the
ASCII codes, etc.).

The directory structure and how it relates to the various modules in the DIS lethality server

are shown in the Figures B-l and B-2. Figure B-l is a replaction of Figure 2 showing where

module source code is located. Figure B-2 shows the current directory organization.

61

The directory structure and how it relates to the various modules in the DIS lethality server

are shown in the Figures B-l and B-2. Figure B-l is a replaction of Figure 2 showing where

module source code is located. Figure B-2 shows the current directory organization.

Client ViScUent
TCP/IP link

DIS Network Traffic

Client

Client VIScBettf

Client VtScMent

$VLS_HOME/src/Libs/DIS/

$VLS_HOME/src/Ubs/DIS/src/dismgr

$VLS_HOME/src/DisMon

$VLS_HOME/src/VLapi

$VLS_HOME/src/Db

SVLS_HOME/src/Server

Figure B-l . Major Module Source Code Locations.

VL Server Directory Structure

 nzz
include
library

header files

OisMon
DIS Monitor

x$VLS_HOME

lib
library

object tiles

X
_L

■;■; »re"::■*■■ .

holds many source
h code directories

bin
■ executable'
^programs/

doc
holds manuals and

'«other documentation

X
TbIReaders

data inilalizers 1
result returners '

 I- ■•
DIS

DIS Manager
home dir

X
VUpi
VLAPI
layer

libs
support

ilibranes:

Server ;-:::;C A
vlserver

& example client 1

Ob
: Data Manager

Layer

T-
«atrx 1 f':: Sarmer

XXX._..
S.:.':.Data jjy"
various däiar

Init
initialization

! [sprintf■"■'?- j FcommaDeim Minor Libraries i .
matrx, scanner, i minorlibrary K immorlibrary \f:mmorlibraty':/\ I minor library

cprint cdf, otters I math routines mnpatscanring j cprint, tppirror j |_^j2^3)-mm

X
XTables

■; sample-static
Hookup fables

IZEIZ
II sampleIUA
!| data tables

Figure B-2 . Directory Structure.

62

CDF(3) CDF(3)

NAME
cdf_strtok() cdf_scan_fields()

Read ASCII data in comma-delimited fields.

SYNOPSIS
ffinclude "cd£h"

char *cdf_strtok(char *str, int *flag, int literal);
int cdf_scan_fields(char *fields[], int numfields, char*buffer>int *cdfflag);

DESCRIPTION
cdf_strtokO is similar to strtok() but specialized for comma-delimited fields. cdf_strtokO reads and
returns pointers to the comma separated field(s) within the argument string str. The returned string will be
the characters found between field separators (the comma). [Note: If the field between commas is empty,
(e.g. "„" then an empty string will be returned). On subsequent calls if str is set to NULL, cdfjstrtokO will
return subsequent comma-delimited fields from within the original string until no more fields are found (at
which point a NULL is then returned). The integer pointed to by flag is set to -1 if the field ended before a
comma or newline was found (this can only occur in the case of a quoted string field being read. That is
when (") is the first character in a field, (at which point cdfjstrtokO expects a quoted string field). When a
quoted string is read the whole field content is return (including the enclosing quotes (")). Within a string
field the quote character (") itself may be quoted by placing the literal character directly in front of the
quote character. The literal character is defined by passing it to cdfjstrtokO via the literal argument.
Some databases may use the quote "" character as the literal (e.g. "This is a string with ""embedded
quotes"""). Also the literal character is often the backslash V (e.g. 'This is a string with V'embedded
quotesV").

cdf_scan fieldsO scans the comma separated fields found in the string buffer pointed to by buffer. The
number of fields expected is specified by numjields. cdfjscanJBeldsO will attempt to read this number of
fields and will return the memory allocated (via mallocO) string duplicates of these fields in the string
pointer array pointed to by fields. cdf_scan_fields0 returns 0 on an error. If a quoted comma separated
field ends prematurely, then -1 is returned in cdffiag. If there was no error, then the number of fields read is
returned and the (malloc'd) string contents of those fields are returned ia.fields[]. It is the caller's responsi-
bility to free this allocated memory (by calling free(3)).

BUGS
The quote character is fixed (as ") (this might be made user selectable).

SEE ALSO
strtok(3) free(3) malloc(3)

AUTHOR
Geoff Sauerborn <geoffs@arl.mil> 1996,1997,1998.

$Revision: 0.7 $ Jan 1998

CPRINTO) CPRINTO)

NAME
cprint_control, cprint, cprint_fflush, cflush

rpt_perror, rpt_error_getErrno, rpt_error_getMsg, _rpt_error_getLastAddedMsg,

SYNOPSIS
include "cprinLh"

int cprint_control(int channel, int ono^ FILE*dest);
int cprint(int channel, char *fmt,...);
int cprint_fflush(int channel);
int cflush(int channel);

void _rpt_error(int re_msg_num, char *addedmsg);
void rpt_perror(char *moreinfo);
int rpt_errorjgetErrno(void);
char* rpt_error_getMsg(void);
char *_rpt_error_JgetLastAddedMsgO;

DESCRIPTION
This library provides some error handling routines and a means for printing to and redirecting channeled
text messages.

The cprint routines are used to print to a channel. Three channels are predefined: CH_ERR, CH_WARN,
and CH_STAT. These are intended for printing error, warning, and status messages respectively. By
default these channels start as "stderr", however, applications can turn on/off or redirect any of these chan-
nels by calling cprint_control(). Channels are written to via cprintO.

The error message functions are meant to assist library writers in tracking errors in lower level functions.
When an error occurs in a lower level library _rpt_errorO is called. The higher level library has the option
of ignoring the message or using it (via rpt_perrorO)• This is similar to the way perror(3) works. The
advantage to rpt_error() is that you may add your own system error codes and messages. Additionally there
is provision for calling error handling functions. These changes are made by editing the static structure of
error signals and messages. This structure is an array called re_msg_messages[] found in cprintc

Library function details:
/*
" cprint_control();
*
*
* int cprint_control(int msgjype, int on_off, FILE* destination);
*
* an interface to allow applications to control lower LIBRARY
* msg level & destination.
*
* msg_type is one of: CH_ERR
* CH.WARN
* CH_STAT
* on_offisoneof: 0 (turns off reporting all msgs of msgjype)
* 1 (turns on reporting message of msgjype)
*
* destination if not NULL, will redirect
* and write all messages of type msgjype to

$Revision:0.4$ Feb 1998

CPRINT(3) CPRINT(3)

* the file pointed to by destination.
*
* returns 1 on success 0 on failure.
*

*/

/*
" cprint_fflush() and cflush()
*

* int cflush(msg_channel)
* int cprint_fflush(msg_channel)
*

* channel is one of
* CH_ERR
* CH_WARN
* CH_STAT
*
* mimics return value of fflush(FILE *)
*
* On successful completion these functions return a value of
* zero. Otherwise EOF is returned. For fflush(NULL), an
* error is returned if any files encounter an error.
*
* cprint_fflush() and are synonyms for themselves cflush()
*

*/

/*
~ cprintO
*

* int cprint(msg_channel, fmt, args....)
*
* prints a message on a PRG Error channel.
* defined default channels ("msg_channer') are:
* CH_ERR
* CH.WARN
* CH_STAT
*
* fmt is standard formatted print format (see printf())
*
* args are optional variable arguments for formatted print.
*

* Return value:
* mimics vprintf (returns #of characters transmitted or -1 on err).

* On successful completion these functions return a value of
* zero. Otherwise EOF is returned. For fflush(NULL), an
* error is returned if any files encounter an error.
*

* see also:
* cfiushO, cprint_control()

SRevision: 0.4 $ Feb 1998

CPRINT(3) CPRINT(3)

*

*/

/* error handler (for known errors)

/

-*/
*/

-*/

I*
~ _rpt_error()
*

* void _rpt_error(int re_msg_num, char *addedmsg)
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*

*/

report a known message number to error system for processing.

re_msg_num is the numeric id of the error.

addedmsg is an additional string of text to be printed
along with the system default message.
The system default message, (and addedmsg), are only
printed when rpt_perror() is called.

if addedmsg == NULL, then just the system default
message is printed (only after rpt_perror() is called).

An internal PRG system error handling function is called
for each known error (re_msg_num).

/*
" rpt_perror()
*

* void rpt_perror(char *s)
*
* print to stderr the last reported error
* (which was generated by a _rpt_error() call.
*

*/

/*
" rpt_error_getErrnoO

* int rpt_error_getErrno(void);
*
* returns the integer value of the last error generated.
*

The integer returned is not the same as the values defined
in the unix intro(2),
This value should never be compare to a number (e.g. "3")
Rather, compare the value with the enumerations denned
in rpt_err.h

SRevision: 0.4 $ Feb 1998

CPRINT(3) CPRINT(3)

* See cprintx for a list of errors numbers and messages.
*
* e.g.if (rpt_error_getErrno() — RE.EISCONN)
* printf("socket in use");
*

*/

/*
" rpt_error_getMsg()
*
* char* rpt_error_getMsg()
*
* Return a text message associated with the last error generated.
* The last error was generated via the last call to _rpt_error().
*

*/

/*
" _rpt_error_getLastAddedMsg()
*
* char *_rpt_error_getLastAddedMsg(void);
*

* Get the last "added message" that was
* added to the standard error message
* via the _rpt_error(int error_.no, static char *an_added_msg)
*

* RETURNS
* a pointer to the "an_added_msg" string.
* NULL if no message was ever added on the last call to _rpt_error().
*
*

*/

Denned error messages (for use in _rpt_error()):

RE_EPERM
RE_ENOENT
RE.ESRCH
REJEINTR
RE_EIO
RE_ENXIO
RE_E2BIG
RE_ENOEXEC
RE_EBADF
RE_ECHILD
RE_EAGAIN

No permission match
No such file or directory
No such process
Interrupted system call
I/O error
No such device or address
Arg list too long
Exec format error
Bad file number
No child processes
Resource temporarily unavailable

RE_EWOULDBLOCK
RE_ENOMEM
RE EACCES

Operation would block
Not enough space
Permission denied

$Revision: 0.4 $ Feb 1998

CPRINT(3) CPRINT(3)

RE.EFAULT
RE_ENOTBLK
RE_EBUSY
RE_EEXIST
RE_EXDEV
RE_ENODEV
RE_ENOTDIR
PvE_EISDIR
RE.EINVAL
RE_ENFILE
RE_EMFILE
RE_ENOTTY
RE_ETXTBSY
RE_EFBIG
RE_ENOSPC
RE_ESPIPE
REJSROFS
RE_EMLINK
RE_EPIPE
RE_EDOM
RE.ERANGE
RE.ENOMSG
RE EIDRM

Bad address
Block device required
Device or resource busy
File exists
Cross-device link
No such device
Not a directory
Is a directory
Invalid argument
Too many open files in system
Too many open files in a process
Inappropriate IOCTL operation
Text file busy
File too large
No space left on device
Illegal seek
Read-only file system
Too many links
Broken pipe
Argument out of range
Result too large
No message of desired type
Identifier removed

REJEDEADLK
RE_ENOLCK

Deadlock situation detected/avoided
No record locks available

RE_ENOSTR
RE_ENODATA
RE_ETIME
RE ENOSR

Not a stream device
No data available
Timer expired
Out of stream resources

RE ENOPKG

RE EPROTO

Package not installed

Protocol error

RE_EBADMSG
REJ3NAMETOOLONG
RE EOVERFLOW

Not a data message
File name too long
Value too large for defined data type

RE.ELIBACC
RE.ELIBBAD
RE_ELIBSCN
REJELIBMAX
RE ELIBEXEC

Can not access a needed shared library
Accessing a corrupted shared library
.lib section in a.out corrupted
Attempting to link in more shared libraries than system
Cannot exec a shared library directly

REJENOSYS
RE.ELOOP
RE_ERESTART
RE_ESTRPIPE
RE ENOTEMPTY

Operation not applicable
Too many symbolic links in path name traversal
Restartable system call
If pipe/FIFO, don't sleep in stream head
Directory not empty

RE ENOTSOCK Socket operation on non-socket

$Revision: 0.4 $ Feb 1998

CPRINT(3) CPRINT(3)

RE_EDESTADDRREQ
RE_EMSGSIZE
PvE_EPROTOTYPE
RE_ENOPROTOOPT
RE_EPROTONOSUPPORT
RE_ESOCKTNOSUPPORT
RE_EOPNOTSUPP
RE_EPFNOSUPPORT
RE_EAFNOSUPPORT
RE_EADDRINUSE
RE_EADDRNOTAVAIL
RE.ENETDOWN
RE_ENETUNREACH
RE_ENETRESET
RE_ECONNABORTED
RE_ECONNRESET
RE_ENOBUFS
RE_EISCONN
RE_ENOTCONN

Destination address required
Message too long
Protocol wrong type for socket
Option not supported by protocol
Protocol not supported
Socket type not supported
Operation not supported on socket
Protocol family not supported
Address family not supported by protocol family
Address already in use
Can't assign requested address
Network is down
Network is unreachable
Network dropped connection on reset
Software caused connection abort
Connection reset by peer
No buffer space available
Socket is already connected
Socket is not connected

RE_ESHUTDOWN
RE_ETOOMANYREFS
REJETIMEDOUT
RE_ECONNREFUSED
RE.EHOSTDOWN
RE_EHOSTUNREACH
RE_EALREADY
RE_EINPROGRESS
RE_ESTALE
RE_ECANCELLED
REJEDQUOT
RE ENFSREMOTE

Can't send after socket shutdown
Too many references: can't splice
Connection timed out
Connection refused
Host is down
No route to host
Operation already in progress
Operation now in progress
Stale NFS file handle
Cancelled
Disc quota exceeded
Too many levels of remote in path

the following are examples of application
system specific errors which have been added
to the library. You may remove these and add
your own.

RE_DBERR
RE_DBFLDERR
RE.DBBADKEY
RE_TGT_UKNOWN
RE_THREAT_UKNOWN
RE_DET_EVENT_UKNOWN
RE_NO_META_REC
RE_VLSOURCE_INTERP
RE_NO_ENVIRON_DATA

RE NOSHM

General Master Data Base Error
Invalid field in database element
Invalid or dangling key pointer
Invalid or undefined target entity
Invalid or undefined threat entity type
Invalid or undefined detonation event
V/L Data meta record not found.
Error interpreting V/L source data.
Could not find or set V/L environment
(initial) parameters for this case.
Shared memory not attached.
An attempt was made to access or set
shared memory which has not been attached
to the current process.

$Revision: 0.4 $ Feb 1998

CPRINT(3) CPRINT(3)

BUGS
Really this should be separated into two libraries (cprint and rpt_error).

SEE ALSO
printf(3), perror(3), ermo(3), strsignal(3)

Author
Geoff Sauerborn <geoffs@arl.mil> , US Army Research Lab. 1996,1997,1998.

$Revision:0.4$ Feb 1998

DB(3) DB(3)

NAME
A Data Management API layer.

SYNOPSIS
dbjnit, db_MetaTable_query, db_MetaTable_retrieve, db_tbl_retrieve, db_tbl_reader_func,
db_tbl_result_func, dbjblJmt_type, dbjbljfmt_result_type

DESCRIPTION
DB (which should really have a name change to DM) is an Application Programming Interface (API) to
the data management layer of the Distributed Interactive Simulation (DIS) Lethality server.

The Data Manager (db) keeps track of vulnerability tables, and DIS entity IDs. It is mostly data driven in
that you specify which entities are associated with which tables. This is done in the in the DAM-
AGE SOURCE_META_DATA_FILE record of the initialization file (see vls_db_init(5)). The file
names for the DAMAGE_SOURCE_META_DATA_FILE, DIS.ENTITIES.FILE, and DIS_AUXIL-
lARYJENTrrTESJFILE are found in the data manager initialization file. The file name of the data man-
ager initialization file is passed to db_init(). db_initO assumes that the filename passed is relative to the
current working directory, or if the environmental variable VLS_HOME is set, relative to the
$VLS_HOME/Data/Init/ directory. Once db_init() is called (and does not return an error), other Data
Manager API calls may be made.

Internally the data manager maintains correlations between p/k tables and their associated entities via meta
data records. These records are structures which contain DIS enumerations for the target and threat as well
as identifiers for the Vulnerability/Lethality methodology to be used, the location of the lethality data, and
an identifier specifying what the format is for that data. This meta data record contains the following fields:

TargetID
Threat©
VL method used (defines how to interpret data results)
Table format (how to parse the data to find results)
Table location (how/where to get data)

The Table format field serves a second purpose. It is also used to determine what type of data is returned by
the data reader function for that particular table format. (Currently only MFK probabilities are returned by
any data reader function known to the data manager (see the VL(3) api vl_mfk_ArlDIS_ProbAll_NoNet()
for further explanation of the MFK data). Any type of data may be returned by a reader function (not just
MFK data). The api db_tbl_fmt_result_type() is used to determine the type of data that is returned).

After calling db_init(), meta data for all targets/threats will have been read. However, none of the actual
data sources (Tables) will have been loaded into memory. To read a source data (table) into memory, first
identify the meta data record associated with the entity and target of interest. This is done via the
db_MetaTable_queryO API

unsigned int* db_MetaTable_query(MetaTable_t *qrec, int *nfound);

db_MetaTab!e_queryO returns index key(s) which can be used to access the meta record(s) queried from
the metadata database. The passed argument (qrec) points to a meta record in the form of a query. In this
passed query record, the target, threat, analysis method, and table format to be sought are entered. NULL
fields will match all records in a category. For example:

TargetID = T72
ThreatID = M829

$Revision: 0.6 $ March 1998

DB(3) DB(3)

VL method used = Munition
Table format = IUA_KE

Note that the above examples are illustrative only of the type (meaning of) data passed to dbJAetaT-
able_query(). For example the Threat ID is actually set to a record of seven (7) integers (the DIS enu-
meration) and not the litteral text M829 . See db_MetaTabIe_queryO for information on the actual
data structure formats which are passed and returned. db_MetaTable_queryO returns a key(s). Using a
key obtained in this manner, the table's meta record can be retrieved from the data manager's internal
database via db_MetaTable_retrieve().

MetaTable_t *db_MetaTable_retrieve(unsigned int key);

Since the meta record returned by db_MetaTable_retrieve() contains the actual location of the lethality
data (in URL format), db_tbl_retrieveO can then be used to retrieve a pointer to the actual source data of
that table (and load its data structure in memory).

void *db_tbl_retrieve(MetaTableJ *mrec)

If this table has never been read into memory, the table will be loaded into memory (and remain there) at
this time. Subsequent calls to db_tbl_retrieve() will not re-load the table into memory, rather they will just
return a pointer to the data structure of the (already loaded) table. There is currently no facility (API) to
unload tables and free memory or force a re-read.

After a successful call to db_tbl_retrieveO results from this table may be looked-up. However, first the
appropriate data look-up function must be obtained by calling db_tbl_result_funcO. To actually look up
the lethality results, the function pointer returned by db_tbl_result_func0 is then used and passed a pointer
to the internal data structure of that lethality data. (That is, it is passed the value returned by
db_tbl_retrieveO)•

An important point to note is that before calling the lookup function, all parameters which define the lethal-
ity event's initial conditions must first be set. These parameters are global variables defined in the
$VLS_HOME/src/Db/vlparam.h and are set in the _vlp API (see vlparam(3)). For instance
vlp_zero_all_paramsO may be called set all these parameters to zero and should be called prior to setting
initial conditions. See vlparam(3)

Often this is referred to as the VLPARAM layer. The lethality result function (which was returned by
db_tbl_result_funcO) will use these parameters to calculate (or look-up) the vulnerability effects.

To review, these are the steps needed to retrieve lethality results:

1. Set the parameters which define lethality initial conditions (via the VLPARAM layer).
2. Call db_MetaTable_queryO to find out if there is data available which applies to the target and threat
of interest.
3. If so, then call db_MetaTable_retrieve() to retrieve a meta record for the data of interest.
4. Using the this meta record, call db_tbljresuIt_funcO to get a pointer to a data retrieval function that
will lookup and return the lethality result (when it is called).
5. Using the same meta record, call db_tbl_retrieveO to get a pointer to the lethality data (in memory).
6. Pass this lethality data pointer as an argument to the data retrieval function that was obtained in step 4.
7. The data retrieval function will then return the appropriate lethality results.

The following code segment example is based on the undocumented test application
$VLS HOME/src/Db/dbtestc:

$Revision: 0.6 $ March 1998

DB(3) DB(3)

{ MetaTable_t mquery, *mrec;
VL_Meth *method_struct;
float *f, *(*funcptr)(void *);
static dbEntityType _Mk_82 = {2, 9, 225, 2, 73, 1 }; /* 500 lb bomb */
static dbEntityType _T80 = {1, 1, 222, 1, 1, 1, 0}; /* Russian tank*/

if (0 == db_init("vls_db_init.ini")) {
perror("could not open vls_db_init.ini");
exit(l);

}

/*
* Get meta record.
V

mquery.tgt = &_T80;
mquery.threat = &_Mk_82;
mquery.vl_meth= "DIS HitToKill";

/* "DIS HitToKill"
* indicates that VL_PARAM_SET_METH_DIS_HitToKill
* is the method ID.
*/

/*
* VL_PARAM_SET_METH_DIS_HitToKill
*
* Identifies both the type of output and the type
* of inputs (PDUs) required to do the look-up.
* It also defines certain actions that may be taken.
* For instance (in higher API layers (the VL layer)) the
* DIS server will ignore the returned results if the
* munition did NOT make.a direct hit against the target.
*

V
mrec = MetaTable_get_rec(mquery.tgt, mquery.threat, VL_PARAM_SET_METH_DIS_Hi

if (mrec == NULL) {
puts("Error not such data record");
exit(0);

}
/*
* data retrieval function.
V
funcptr = db_tbl_result_func(mrec);
if (funcptr != NULL)
/*
* use data retrieval function to lookup results.
* Pass a pointer to the look-up table.
* The look-up table is already loaded into memory.

*/
f = funcptr(db_tbl_retrieve(mrec));

else
f = NULL;

if (f!= NULL) { /* The reader function returned some data...*/
int j;

$Revision: 0.6 $ March 1998

DB(3) DB(3)

VL_Result type_of_output;
/*
* we now print what this data returns as its output.
*/
type_of„output = db_tbl_fmt_result_type(mrec->tblfmt) ;
if (type_of_OUtput == PS_MFK_LOWER_BOÜND) {

/* - Note: by examining the meta record describing this data's
* format "mrec->tblfmt" with db_tbl_fmt_result_type()
* (which returned " PS_MFK_LOWER_BOUND"),
* we now know that the data returned are an array of
* kill probabilities (M,F,MF,K,and No Damage).
*/

for (j=PS_MFK_M; j<=PS_MFK_NODAMAGE; j++) {
printf("%d: %f0,j,f[j]); /* show some data*/

}
}

} else {
puts("no results from table lookup! -ERROR");

}
}

Synopsis of the API functions are now given in the following order:

db_init()
db_MetaTable_query()
db_MetaTable_retrieve()
db_tbl_retrieve()
db_tbl_reader_func()
db_tbl_result_func()
db_tbl_fmt_type()
db_tbl_rmt_result_type()

/*
~ db_init()
*
* int db_init(char *db_init_filename)
*
* General initialization for database level.
* Initialization file name (in string form) is passed as an argument.
* This file is opened and parsed. In the file various filenames will
* be found identifying things like:
*
* all DIS dbEntity ID's (DIS_ENTITIES_FILE)
* extra DIS dbEntity ID'S (DIS_AUXILIARY_ENTITIES_FILE) ,
*
* and where to find damage mechanism and data for different
* target/threat interactions: (DAMAGE_SOURCE_META_DATA_FILE)
*
* These files are opened and read by there appropriate initialization
* function.
*
* Returns:
*

$Revision: 0.6 $ March 1998

DB(3) DB(3)

* 1 if successful.
*
* 0 if an error occurs somewhere (either in reading the
* db_init_filename filename itself or one of the
* other files to be read), e.g.:
* DIS_ENTITIES_FILE,
* DIS_AUXILIARY_ENTITIES_FILE, etc.

*/
int db_init(char *db_init_filename);

/*
~ db_MetaTable_query()
*
* unsigned int *db_MetaTable_query(MetaTable_t *mrec, int *num_elements)
*
* Try to find record(s) matching portions of the data record passed.
* Elements are logically ANDed together.
* Wildcard is a NULL field. (all zeros in the case of the DIS entity
* fields.
*
* If the query is successful (data items found), their database keys
* are returned in an array. The length of the array is returned
* by setting the int pointed to by num_elements to the number of
* elements (keys) in the array. These keys can be used with
* mtbl_retrieve_data() to retrieve the record(s).
*
*
* currently only the fields:
*
* tgt - DIS ID of tgt
* threat; - DIS ID of threat
* vl_meth; - type of analysis identifier
* tblfmt; - format of lookup table

* are queried on. (all other fields are ignored).
*
* RETURNS NULL is returned by the function if there were no matches
* otherwise (if there were matches) the the function returns
* a pointer to an array of keys. (A key is used to retrieve
* the record - see db_MetaTable_retrieve()).
* The number of elements in recored is passed by setting num_elements.
*
* NOTE: this array must be free by calling functions.
* NOTE: MTBL_QUERY_MAX is an internally defined constant of the Maximum
* number of elements that will be returned in the array...
*

*/
ttdefine MTBL_QUERY_MAX 100
unsigned int *db_MetaTable_query(MetaTable_t *mrec, int *num_elemerits);

/*

SRevision: 0.6 $ March 1998

DB(3) DB(3)

~ db_MetaTable_retrieve()
*
* MetaTable_t *db_MetaTable_retrieve(unsigned int key);
*
* db_MetaTable_retrieve() returns the meta record associated with
* a database index value "key".
*
* RETURNS
* pointer to the table meta record (MetaTable_t *)
* NULL if no record found or an error occurred.

*/
MetaTable_t *db_MetaTable_retrieve(unsigned int key);

/*
~ db_tbl_result_func()
*
* void * db_tbl_result_func(MetaTable_t *mrec)
*
* returns a pointer to the result function
* which knows how to interpret the set
* VL_Parameters, lookup the approprate results
* in the lookup table.
*
* The Table data is in the format specified
* found in the tblfmt field of the passed mata record
* parameter argument (mrec->tblfmt).
*
* Returns: pointer to the table look-up (result) function.
* NULL on error.
*
* See also: db_tbl_reader_func()
* db_tbl_fmt_type()
*

*/
void * db_tbl_result_func(MetaTable_t *mrec);

/*
~ db_tbl_retrieve()
*
* void *db_tbl_retrieve(MetaTable_t *);
*
* Retrieve a pointer to the data structure which holds
* the source data of a table loaded into memmory.
* This pointer is passed to the table look-up function which
* the function that knows how to parse this data structure.
*
* RETURNS: pointer to a table loaded into memmory.
* NULL if table is not loaded into memmory or other error.
*
* See also:
* _db_tbl_load_source() - called only once, (not needed)
*

$Revision: 0.6 $ March 1998

DB(3) DB(3)

*/
void *db_tbl_retrieve(MetaTable_t *metr_ptr)

/*
~ db_tbl_fmt_type()
*
* TblFmt_Enum db_tbl_fmt_type(char *fmtname)
*
* returns a TblFmt_Enum that corresponds to the string "fmtname"
* (positive integer) if the string represents
* a recognized format.
* _TBLFMT_ERROR (0) otherwise (a failure).
*
* See also: db_tbl_fmt_returned_data_type()
* the TblFmt_t structure (struct _TblFmt_t)
* the LookUp_Tbls[] and TblFmt2Result[] arrays,
*

*/
int db_tbl_fmt_type(char *fmtname)

/*
~ db_tbl_fmt_result_type();
*
* VL_Result db_tbl_fmt_result_type(char *fmtname);
*
* RETURNS the data type returned by the table's reader function
* which reads the data source described by "fmtname".
*
* a returned value of PS_MFK_LOWER_BOUND means "MFK" type.
*
* PS_ERROR is returned if "fmtname" is unrecognized
* or another error occurs.
*
* SEE ALSO: db_tbl_fmt_type()
* db_tbl_result_func()
*

V
VL_Result db_tbl_fmt_result_type(char *fmtname)

FILES
$VLS_HOMiyData/Init/vls_db_init.ini
vis db_initini is the initialization file for the data manager. The environmental variable VLS_HOME
must be set to the root directory of the DIS Lethality server or if not, the initialization file is looked for rela-
tive to the current working directory of the parent process.

SEE ALSO
Other DIS Lethality server components:

vls_db_init(5) vl(3) vlparam(3)

AUTHOR
Geoff Sauerborn <geojfs@arl.mil> , US Army Research Lab. 1997,1998.

$Revision: 0.6 $ March 1998

DIS_M0N(1) DIS_M0N(1)

NAME
dis_mon

SYNOPSIS
dis_mon -d DIS_mgr_host -e exerciseJD -F [big I little] -D Dport -v Vport -s

DESCRIPTION
Dis mon (DIS Damage Monitor) is a part of the DIS Lethality server, but may also be used to monitor DIS
exercises for lethality effects in a stand alone mode.

When dis_mon runs in conjunction with the DIS Lethality server vlserver , it serves as a "back end" for
vlserver - doing the grunt work for the server, (e.g. looking-up lethality results).

Dis mon uses the ARL DIS Manager to connect to the DIS network, therefore the ARL DIS Manager must
be installed and running first. (See dis_mgr(l)).

Dis_mon listens to DIS Protocol Data Units (PDUs) paying attention to only certain PDUs that may have
an influence on the damage state of simulation entities. Currently the DIS Monitor only listens to Fire,
Denotation, and Entity State PDUs. The reason only fliese PDUs are monitored is because the DIS lethality
server only knows how to respond to queries relating to "munition" type damage. Other vulnerabil-
ity/lethality methodologies which might require other types of "trigger" events might require the monitoring
of other types of PDUs. For example, system damage caused by some means of electronic warfare may
require monitoring the Electromagnetic Emissions PDU.

When started the DIS Monitor will attempt to connect to the DIS lethality server via a shared memory link.
This implies that the DIS lethality server (vlserver) must already be running on the same computer. Once
connected to vlserver the DIS Monitor may respond to queries made by the vlserver on behalf of vlserver's
clients.

Note, if for any reseason the vlserver is stopped or restarted, the DIS monitor must also be restarted. This
is because the vlserver creates a shared memory location for joint use during start up. When dis_mon is
started, vlserver communicates to disjmon the location of the shared memory resources. If disjnon is
already running when vlserver is started, they will both be using different shared memory locations. Thus
if vlserver is restarted, disjmon must also be restarted. Of course, restarting disjmon means that all
knowledge of lethality events already monitored will be lost up to the point of the restart.

Stand Alone Mode:

Dis_mon does not need to operate in conjunction with vlserver. If run by itself, disjnon may be used to
monitor DIS entities and their lethality states. The following commands are accepted from the keyboard:

r - provides a "rollup report" to the console.

q - may be used to quit and exit dis_mon.

Data in the rollup report merely reflect what is being broadcast by the DIS simulations controlling the enti-
ties. A rollup report output will produce a list (one entity per line) showing certain entity states as reported
from the 'Entity Appearance Field" of the Entity State PDU. Its output will look similar to the following
example:

tracking 2 Entities in Exercise 37

Mon Mar 9 16:13:40 EST 1998

$Revision: 0.3 $ March 1998

DIS_M0N(1)

-eP

DIS_MON(l)

 Damage Smoke Times
Sight Modrt Dstryd Pirn Eng PlmEng Hit Frc ID Type Mobil Fii

1 1005 " FMC M113 Armor
2 1006 " BRDM-2 Reconna

0 0
0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

FRIENDLY
(Force ID 1)

(blue)

FOES
(Force ID

(red)
2)

KKilled 0
MKilled 0
FKilled 0
MFKilled 0

0
0
0
0

The columns seen represent the following information. Values denoted by "Bool:" are boolean values
(where a value of 1 means 'TRUE" and 0 means "FALSE"). Unless otherwise stated, these data are all
extracted from the Entity State PDU:

SRevision: 0.3 $ March 1998

DIS_M0N(1) DIS_M0N(1)

Column Meaning

Entity
Frc

ID

Type

Entities Force ID. This information
comes from the Force ID Field of the
Entity State PDU. Valid Force IDs are:
0 = Other
1 - Friendly
2 = Foe
3 = Neutral

This is the Entity ED Field portion
of the PDU's Entity Identifier Record.

This column reports the name of the
entity type. The entity type a numeric
value defined in the Entity Type Record
(of the Entity State PDU). The name seen
in this column is the text name associated
with that numeric entity type ID. The
text name comes from the V/L Data Manager
initialization file's 'DIS_ENTITIES_FILEM

record. (See vls_db_init(5)).

KILL
Mobil
FireP

Bool: Reports if entity is mobility killed.
Bool: Reports if entity is fire power killed.

Damage
Slight
Modrt
Dstryd

Bool: Reports if entity is slightly damaged.
Bool: Reports if entity is moderately damaged.
Bool: Reports if entity is destroyed.

Smoke
Plm
Eng
PlmEng

Bool: Smoke plume is rising from the entity
Bool: Entity is emitting engine smoke
Bool: Entity is emitting engine smoke
and smoke plume is rising from the entity

Times
Hit

This field displays the number of times that
disjnon saw the entity "hit" by a munition.
This is a derived number an does not appear
in the Entity State PDU.

Following the entity appearance rollup report, a summary is provided for friendly and foe kills (Mobility
MKilled, Fire Power FKilled, Mobility and Fire Power MFKilled, and completely destroyed (or Catas-
trophic) (KKilled).

Naturally, when run If run by itself, dis_mon will not be able to provide damage state (look-up table)
results since it will not be receiving queries from the vlserver.

OPTIONS
-d DISjngrJiost The ARL DIS Manager is running on the computer whose IP address/name is
DISjngrJiost. By default disjnon looks for the ARL DIS Manager to on to the same host on which it is
running.

-e exercise_ID This tells disjnon to monitor the DIS exercise whose exercise identification number is
exercise. By default dis_mon monitors exercise number 1.

$Revision: 0.3 $ March 1998

DIS_M0N(1) DIS_M0N(1)

-F [big | little] The -F options forces big (or little) endian conversion of the incoming binary DIS traffic.
Normally mis option is unnecessary since disjnon will auto-detect whether it is running on a big endian
(MIPS (SGI), RISC etc..) or little (Intel, DEC Alpha, etc) computer architecture. The byte order of DIS
traffic is supposed to be network byte ordered (big endian). However, if another DIS host is publishing
PDUs in the incorrect (little endian) format, then this option may be used to interpret the incorrectly broad-
cast data in a meaningful way.

-D Dport Dport is the port number used by the ARL DIS manager (which is running on DISjngrJiost
host computer. By default the ARL DIS manager uses port 4978.

-v Vport This option tells disjmon to connect to the vlserver on TCP/IP port number Vport. disjnon
makes this connection in order to find out what shared memory identification is being used for vlserver to
dis_mon communication. This is the same port the vlserver uses to communicate with all its clients. By
default Vport is 4976.

FILES

-s The -s option runs the DIS Monitor in stand alone mode (not communicating with the vlserver).

yroleup.out provides Damage state (as reported by the DIS entities).
yroleup.det Lists of Detonations events and the entities involved.
$VLS_HOME^ata/faitMs_db_mtini
vls_db_initini is the initialization file for the DIS Monitor. (This is the same initialization file needed by
the data manager (db) API layer of the DIS Lethality server). The environmental variable VLS_HOME
must be set to the root directory of the DIS Lethality server.

SEE ALSO
Other DIS Lethality server components:

disjngr(l), vlserver(l), vls_db_init(5)

AUTHOR
Geoff Sauerborn <geoffs@arl.mil> , US Army Research Lab. 1997,1998.

$Revision: 0.3 $ March 1998

DIS_MGR(1) DIS_MGR(1)

NAME
dis_mgr - run the ARL DIS Manager (server)

SYNOPSIS
dis_mgr [-v] [-B bridgejiost] [-c num_clients] [-n network_interface] [-r recv -s send] [-MP port] [-BP
port] [-m] [-g groupname] [-ttime] [-SitelDMask mask_file] [-Hhost_id] [-S site_id] [-V version] [-X exer-
cise] [-x ONIOFF] [-F pdu_type] [-P] [-1 filename] [-ap] [-overl-overwrite] [-il-inl-incoming] [-ol-outloutgo-
ing] [-h] [-hn] [-a] [-b] [-ab] [-P]

DESCRIPTION
This application is part of a suite of utilities and libraries collectively called die DIS Manger. This particu-
lar program is also called the DIS manager (but it is not to be confused with the collective suite).

This program monitors DIS (Distributed Interactive Simulation) Protocol Data Units (PDU) on a UDP
(User Datagram Protocol) network and transmits the data to clients applications listening on a TCP/IP net-
work connection. Client applications use local library calls (supplied as part of the ARL DIS Manager
suite) to receive these PDUs as an internal (C language) data structure representation of these PDUs. Pro-
viding PDUs this way in a native language data structure makes it easier for application programs to manip-
ulated and use the PDU data.

The DIS Manager server (dis_mgr or Dis_Mgr) has the following command line options:

-v verbose mode. Incoming UDP and outgoing TCP/IP traffic and other information is reported.
-P print a list of all PDU types.
-B bridgejiost where bridgejiost is the name of the machine running another instance of Dis_Mgr to be
bridged. Bridge mode uses the internet tunneling wherein one may simulate a local (DIS UDP) network
connection across a long distance network (like the internet). The dis.mgr is run on both computers (See
options -MP and
-BP).
-c num_dients where num_clients is the maximum number of clients the dis_mgr will support (the default

is 8).
-n networkinterface - where networkjnterface is the name of the ethernet interface (e.g., leO, ecO, loO
{for loopback}). As a default, the Dis_Mgr will attempt to determine this (via the internal function call
get_ethernet_interface()). Use this option to bypass the default.

Port information:

-r recv Where recv is a port number for receiving PDUs (DIS traffic) on the UDP network (default is port
3000).
-s send Where send is a port number for sending PDUs on the UDP network (default is port 2099).
-MP port Where port is the port number for internal DIS_Mgr and Client TCP/IP communication. By
default this is port number 4978.
-BP port Where port is the port number for DIS_Mgr to remote site DIS_Mgr bridge (internet tunneling)

connections.

Multicast information: If you wish to avoid the internet tunneling method to facilitate long distance net-
working you may use multicast if your network supports multicast. A network a<lministrator will have to
do additional configuring to prepare the multicast group.

-m Use multicast communication mode.
-g groupname Set the multicast group to groupname.
-t time time to live for multicast.

Specific to DIS:

$Revision: 3.6 $ 27 Jan 1998 1

DIS_MGR(1) DIS_MGR(1)

DIS site ID masking:

-SitelDMask mask_file Where mask_file is the name of a file with list of valid site IDs. The file
is expected to be a list of integers, the number of integers in this file is between 0 and
MAX_SITE_ID. Where MAXJSITEJD is an internally defined integer (whose default value is
FD_SETSIZE, which is normally equal to the maximum number of open files supported by the
operating system). Use this option to list valid DIS application "sites". The "site" is a number
placed in the DIS PDU header as part of the DIS standard.

DIS PDU header information:

As a service to client applications the DIS Manager pre-fills certain header fields in PDU the
header. This is done at the time that client applications request a new PDU. These fields are the
site, host, and exercise field. In a DIS exercise these field collectively identify the host computer
from which PDUs originated. The Dis_Mgr determines the values for these fields via environmen-
tal variables or the following command line switches:

-H host id Specifies that host_id will be the DIS host ID number (the host field in the PDU
header).~This overides the environmental variable DIS_HOST_ID and the default internal value
used by the DIS manager.

-S site_id Specifies the DIS site ID number (in the site field of the PDU header record). This
overides the environmental variable DIS_SITE_ID and the default internal value used by the DIS
manager (a defined constant SITE_ID_ABERDEEN).

-X exercise Specifies the DIS exercise ID (which will appear in the exercise field of the PDU
header record). This overides the environmental variable DIS_EXERCISE_ID and the default
internal value of 1 used by the DIS manager.

-V version Where version is one of 2, 3, or 4 (for DIS versions 2.0.2, 2.0.3, and 2.0.4 respec-
tively). This changes the default DIS protocol version number to be associated with out going
PDUs and overides the default which was set in the DIS Manager at compile time. Note: that the
internal structure of PDUs will not be changed to match a particular DIS protocol version. This
option merely changes the value placed in the "version" field of the PDU header. To change the
PDU format to conform to a different DIS version you must edit H/protocol_ver.h and define
either DIS2_0_2, DIS2_0_3, or DIS2_0_4. Following this, recompile the DIS Manager and all its
utilities. (See the recompilation script ${MGR}/compile.sh).

PDU filtering:

-x ON|OFF If -x if followed by ON, then all PDUs which do not match the DIS_EXERCISE_ID
will be filtered out of the stream and not passed on to client applications. If -x OFF is used, men
any PDUs seen will be passed to clients (so long as the clients have requested that type of PDU).
Client applications have the option to request that all or only certain types of PDUs get sent to
them by the disjngr. This is done via the dis_register_pdu () API call.

LOGGING

The DIS Manager can create binary files containing a log of the PDU traffic. The following options apply
to DIS traffic logging:

-1 filename - turn logging on. Use filename to hold the record of PDUs.
-ap - appends logged PDUs to the log file.
-over|-overwrite - overwrites the log file.

$Revision: 3.6 $ 27 Jan 1998

DIS_MGR(1) DIS_MGR(1)

-i|-in|-incoming Logs incoming PDUs only. (PDUs coming into the Dis_Mgr via the DIS UDP
network).
■o|-out|-outgoing Logs outgoing PDUs only. (These are PDUs sent by clients to the dis_mgr).
-h Prepends header to each logged PDU. (This is the default). The header information is needed
for the DIS Manager utility playback to work properly. (Playback is used to play back PDUs
from a recorded exercise).
-hn Logs PDUs with no header information.
-a Logs in ascii format.
-b Logs in binary format. (This is the default).
-ab Logs in ascii-binary format,

SEE ALSO
"Distributed Interactive Simulation (DIS) Network Manager",Dec 1994, ARL-TR-780, Ken Smith.
Other DIS Manager utilities, playback(l), client(l), btoa(l)/btoab(l). Look in ${MGR}/doc for man
pages to these applications.

FILES
The collective DIS Manager is in a file system starring from its own "home" directory. This directory may
be located anywhere but, naturally, should be accessable by users who are building client applications. (In
order for them to link the manager's object libraries with their application). In the list of files below we use
"${MGR}" to represent the DIS Manager's "home" directory . From this root, the subdirectories hold the
following files:

${MGR}/src/H - C header "include" files.
$ {MGR }/src/MGR - source code for the dis_mgr.
$ {MGR }/src/CLIENT - source code for an example client application.
${MGR}/src/CLIENTX - source code for a Motif X client (unsupported).
${MGR}/src/PLAYBACK- source code for logged exercise playback utility.
$ {MGR}/src/UTIL - source code for other utilities (btoa, btoab).
${MGR}/src/LIB - library source code (for clients and the dis_mgr).
$ {MGR }/lib - object code libraries.
$ {MGR }/bin - compiled executables.
${MGR}/doc - some documentation.
$ {MGR }/compile.sh - shell program to compile everything.
${MGR}/scrub.sh - shell program to remove compiled objects and executables, etc..

AUTHOR
Original Authon Ken Smith, US Army Research Lab. 1994,1995,1996. with additional help from others:
Holly A. Ingham, <hollyo@arl.mil> and Geoff Sauerborn <geoffs@arlmil> Mark Thomas
<marh@arl.mil>. James Bowen made an early port to the PC and wrote the original PLAYBACK. Geoff
Sauerborn is the most recent maintainer of this software.

$Revision: 3.6 $ 27 Jan 1998

MATRX(3) MATRX(3)

NAME
(Matrix Single precision floating point routines)

mat_mult, mat_pm, mat_fpm, mat_fread, mat_fwrite, mat_build_psi, mat_build_phi, mat_build_theta,
mat_build_ident, mat_build_rot3, mat_distance, mat_distance_xy, mat_build_DISEntity2World,
mat3uild_DISWorld2Entity,mat_build_DISEntity2World3x3,mat_build_DISWorld2Entity3x3

(Matrix Double precision floating point routines)

mat_dmult, mat_dpm, mat_fdpm, mat_dfread, mat_dfwrite, mat_dbuild_psi, mat_dbuild_phi,
mat_dbuild_theta, mat_dbuild_ident, mat_dbuild_rot3, mat_ddistance, mat_ddistance_xy, mat_dbuild_DIS-
Entity2World, mat_dbuild_DISWorld2Entity, mat_dbuild_DISEntity2World3x3, mat_dbuild_DIS-
World2Entity3x3, mat_calcDISPsiWrtXAxis

SYNOPSIS
#indude "matrx.h"

void mat_mult(float *dest, float *ml, float *m2, int rowsl,int colsl, int rows2);
void mat_pm(float *m,int rows,int cols); /* PRINT A MATRIX */
void mat fpmOFTLE *fp, float *m,int rows,int cols); /* PRINT A MATRIX to file */
int mat_fread(FTLE *fp, float *m,int rows,int cols); t* READ A MATRIX from a file */
void mat_fwrite(FILE *frj,float *m,int rows,int cols); /* WRITE A MATRIX to file */
void mat_build_psi(float*psimat, float psi); I* rotate clockwise about the z axis by psi radians */
void mat_build_phi(float *phimat, float phi); /* rotate clockwise about the y axis by phi radians */
void mat_build_theta(float »thetamat, float theta);/* rotate clockwise about the x axis by theta radians */
void mat~build~ident(float *ident, int n);/* make ident an NxN identity matrix */
float *mät_build_rot3(float *mat, double psi, double theta, double phi);
double mat_distance(float *pntl, float *pnt2); /* distance in 3 space*/
double mat~distance_xy(float *pntl, float *pnt2); I* ignore Z */

float *mat_build_DISEntity2World(float *mat,double psi,doubIe theta,double phi);
float *mat_build~DISWorld2Entity(float *mat,double psi,double theta,double phi);
float *mat_bufld~DISEntity2World3x3(float *mat,double psi,double theta,double phi);
float *mat_build_DISWorld2Entity3x3(float *mat,doubIe psi,double theta,double phi);

void mat_dmult(double *dest, double *ml, double *m2, int rowsl^nt colsl, int rows2);
void mat_dpm(double *m,int rows,int cols); I* PRINT A MATRIX */
void mat_fdpm(FILE *fp, double *m,int rows4nt cols); /* PRINT A MATRIX to file */
int mat_dfread(FILE *fp, double *m,int rows,int cols); /* READ A MATRIX from a file */
void mat_dfwrite(FILE *fp,double *m4nt rows,int cols); I* WRITE A MATRIX to a mat */
void mat_dbuild_psi(double*psimat, double psi); /* rotate clockwise about the z axis by psi radians */
void mat_dbuildjphi(double *phimat, double phi); I* rotate clockwise about the y axis by phi radians */
void mat dbuild_theta(double *thetamat, double theta)/" rotate clockwise about the x axis by theta radians */
void mat~dbuild~ident(double "ident, int n);/* make ident an NxN identity matrix */
double *mat_dbüild_rot3(double *mat, double psi, double theta, double phi);
double mat_ddistance(double *pntl, double *pnt2); /* ignore Z */
double mat_ddistance_xy(double *pntl, double *pnt2); /* ignore Z */

double *mat_dbuiId_DISEntity2World(double *mat,double psi,double theta,double phi);
double *mat_dbuild_DISWorld2Entity(double *mat,double psi,double theta,double phi);
double *mat_dbuild~DISEntity2World3x3(double *mat,double psi,doub!e theta,double phi);
double *mat dbuild_DISWorld2Entity3x3(double *mat,double psi,double theta,double phi);

$Revision:0.10$ Jan 1998

MATRX(3) MATRX(3)

double mat calcDISPsiWrtXAxis(double x, double y); /* calc psi in Entity coord, sys */

DESCRIPTION
This library provides some general matrix manipulation functions. It is small and simple.

All library functions treat matrices as a continuous block of memory (that is in a single array). Matrix ele-
ments are stored ((R)*(NCOLS) + (C)) elements from the matrix base address. Where "NCOLS" are the
total number of columns in the matrix, R and C are matrix number of rows and columns of interest respec-
tively. (Note: with the exception of NCOLS, we start counting at 0. Therefore the very first row and first
column are indexed as the O'th row and O'th column.) For example, let M be the 3 row by 4 column matrix:

1 2 3 4
5 6 7 8
9 10 11 12

Then the following C language statments are true:

M[((0)*(4) + (0))]==l
M[((l)*(4) + (2))]==7
M[((1)*(4) + (3))] =8
M[((2)*(0) + (2))]=9

The convenience macro MATJTNDX is provided for indexing matrix elements.

usage: MAT_INDX(row, col, NCOLS)

For example, using matrix M above the following C language statments are true:

M[MAT_INDX(0,0, 4)]==1
M[MAT_INDX(1,2, 4)]=7
M[MAT_INDX(1,3,4)]=8
M[MAT_INDX(2,2, 4)]=11

A second convenience macro MAT_MTRX is also provided.

usage: MAT_MTRX(matrix, row, col, NCOLS)

Using matrix M above and the MATjMTRX macro the following C language statments are true:

MAT_MTRX(M, 0,0,4)=1
MAT_MTRX(M, 1,2,4)=7
MAT_MTRX(M, 1,3, 4)=8
MAT_MTRX(M, 2,2,4)=»11

There are a few functions which are not general at all but specifically apply to the Distributed Interactive
Simulation standard (DIS). These are conversion routines used to translate points to and from the DIS
world coordinate system and the DIS Entity coordinate system. (These are functions with the capitalized
letters "DIS" found in their name).

The DIS standard specifies that the following sequence of rotations occur to transform from the DIS World

$Revision:0.10$ Jan 1998

MATRXO) MATRX(3)

to the DIS Entity coordinate systems. First rotated about the Z axis (by psi radians). This produces a trans-
formed X and Y axis (called X' and Y'). The next rotation occurs about the transformed Y axis (Y') by
theta radians (producing a new X axis again [X"]). The last rotation is by phi radians about the X" axis.
These three rotation angles (psi, theta, phi) are call the Euler angles. Positive angles of rotation about an
axis are clockwise about the axis ("clockwise" as viewed from axis origin out towards the positive path of
the axis). The functions mat_build_DISWorld2EntityO and mat_build_DISEntity2WorldO and then-
double precision counterparts may be used to create matrices which may be used to accomplish these DIS
transformations. The transformation matrix produced would then be used to multiply a point (or set of
points) to translate that point(s) to the other DIS coordinate system.

For instance, the following code segment will use the Euler angles psi, theta, phi to build the transformation
matrix (XMat). This matrix wil then be used to transform the matrix MEntity (which contains 2 points in
the first two rows) to the DIS world coordinate system:
»include <math.h>
«include "matrx.h"

double XMat[16]; /* will hold transformation matrix a 4x4 */
static double psi=M_PI , theta=M_PI , phi=M_PI ; /* maded-up angles */
double MEntity = { 0., 0., 0., 1. /* 1st pt. (0,0,0) */

1., 2., 3., 1. /* 2nd pt. (1,2,3) */
};

double MWorld[8];/* will hold the transformed points */

if (NULL != ma't_dbuild_DISEntity2World(Xmat, psi, theta, phi)) {

mat_dmult(MWorld, MEntity, Xmat, 2, 4, 4);
/*
* MWorld now holds the transformed points
*

V
};

The reason for the fourth matrix column is because these functions transform homogeneous coordinates
whose usefulness is not covered here but is found elsewhere [ROGERS]. Therefore matrices used in these
functions must have a 4th column (even if not used) as a place holder. Any number will suffice as a place
holder, but the use of the number one (1) is preferred. There are alternate functions mat_build_DISEn-
tity2World3x30, mat_build_DISWorld2Entity3x30 and their double precision counter parts
mat_dbuUd_DISEntity2World3x30 and mat_dbuild_DISWorld2Entity3x3(). These functions do not
use the heterogeneous fourth dimension. Therefore only a 3 dimensional point (matrix with exactly three
(3) columns) will be returned by these functions.

Note that rotation matrices produced by mat_build_psiO, mat_build_thetaO, and mat_build_pM0 and
their double precision counterpart functions apply to a single rotation about the ordinal (untransformed)
coordinate axis. This differs from the DIS standard method for translating between the DIS Entity (some-
times called the "missile coordinate system") and the DIS World coordinate systems (sometimes called the
"earth centered earth fixed, or the geocentric Cartesian coordinate system").

One important final note before introducing the functions. The function mat_build_rotO and its double
precision counter part mat_dbuild_rot() have nothing to do with the DIS coordinate rotations. These func-
tions build a rotational matrix based on the assumption that the ordinal axis (the (original X, Y, and Z axis)
remain fixed and are never transformed (into X', Y\ Z\ and X", Y", Z"). (See the IEEE standard 1278.1).
Therefore never use these functions in combination to build a DIS world to entity coordinate transformation

$Revision: 0.10 $ Jan 1998

MATRXO) MÄTRX(3)

matrix. Use the DIS specific functions instead (the ones with DIS in their function name).

Further details on library functions:

/*
~ mat_dmult()
*
* void mat_dmult(double *dest,double *ml.double *m2,int rowsl,int colsl,int rows2)
*
* Matrix multiply [dest] = [ml][m2]
*
* Multiply matrix "ml" by "m2" and store the results in "dest".
*
* ml is a rowsl, by colsl matrix
* m2 is a rows2, by colsl matrix
* dest is a rowsl, by colsl matrix

* for example: dest ml m2
* |1 2 3 0| - |1 2 3 0| [10 0 01
* * |0 1 0 0|
* |0 0 1 0|
* |0 0 0 1|
* dest is 1 row by 4 columns
* ml is 1 row by 4 columns
* m2 is 4 rows by 4 columns
*
* In this case the proper call to mat_dmult is:
*

* mat_dmult(dest, ml, m2, 1,4,4);
*
*/

/*
~ mat_fdpm()
*
* void mat_fdpm(FILE *fp, double *m,int rows,int cols)
*
* Print a double precision matrix to the file pointed by
* the file pointer fp. m is a matrix with "rows" rows
* and "cols" columns.
* The purpose is to present the matrix in a fairly human
* readable format.
*

* BUGS:
* This is just for a'popular range'of numbers.
* (It assumes 6 decimal places an no more than 19 digits).
*

* SEE ALSO:
* mat_fdwrite()
*

*/

$Revision: 0.10 $ Jan 1998

MATRX(3) MATRXß)

/*
" mat_dpm()
*
* void mat_dpm(double *m,int rows,int cols)
*
* Print a double precision matrix to the standard output
* the file pointer Q>. m is a matrix with "rows" rows
* and "cols" columns.
* The purpose is to present the matrix in a fairly human
* readable format.
*

* BUGS:
* This is just for a 'popular range' of numbers.
* (It assumes 6 decimal places an no more than 19 digits).
*

* SEE ALSO:
* mat_fdpm(), mat_fdwrite()
*

*/

/*
~ mat_dfwrite()
*
* void mat_dfwrite(FILE *fp,double *m,int rows,int cols)
*

* Write a matrix to a file showing more precision
* but in a less human readable format. The purpose
* is for storing matrix contents (which can then be read
* back (by mat_dfread()).
*

*BUGS
* Limited to about 21 digits of precision, but you can
* always change the source code if you have say a 64 bit
* architecture (with 128 bit double precision floating point
* numbers).
*
* Numbers are converted from their native binary
* format to scientific notation numbers
* Disadvantage: Therefore this may cause common digital to
* real numbers conversion ambiguities.
* Advantage: However this allows portability of your data
* between systems.
*

* SEE ALSO:
* mat_dfread(), mat_fdpm()
*/

/*
" mat_dfread()
*
* int mat_dfread(FILE *fp, double *m,int rows,int cols)
*

$Revision: 0.10 $ Jan 1998

MATRX(3) MATRX(3)

* Read a matrix from file, storing it internally in the
* (matrix) double precision array "m".
*

* Stored matrix values are ASCII numbers.
*

* Once a matrix reading is started (from the
* file), only the matrix elements are expected (i.e. NO
* comments are allowed in the file (unless they proceed
* or come before the matrix).
*

* SEE ALSO:
* mat_dfwrite()
*/

/*
' mat_dbuild_psi()

* void mat_dbuild_psi(double*psimat,double psi)
*

psimat - the 4x4 matrix
psi - the rotation angle psi (about the Z axis in radians)

Build a Psi rotation matrix of doubles. (Psi, rotation about the Z
axis in radians) and return it in psimat.

RETURNS
The transformation matrx is returned in the passed array psimat.
Note that a 4x4 matrix is returned therefore
"psimat" must be an array of at least 16 doubles.
Furthermore if psimat is then used in a multiplication,
"4" columns must be specified as an argument to mat_dmult().

/*

*
*
*
*
*

*
*
*
*
*
*
*
*

mat_dbuild_theta()

void mat_dbuild_theta(double*thetamat,double theta)

thetamat - the 4x4 matrix
theta - the rotation angle theta (about the Y axis in radians)

Build a theta rotation matrix of doubles, (theta, rotation about the Y
axis in radians) and return it in thetamat.

RETURNS

The transformation matrx is returned in the passed array thetamat.
Note that a 4x4 matrix is returned therefore
"thetamat" must be an array of at least 16 doubles.
Furthermore if thetamat is then used in a multiplication,
"4" columns must be specified as an argument to mat_dmult().

$Revision: 0.10 $ Jan 1998

MATRX(3) MATRX(3)

*/

/*
' mat_dbuild_phi()

* void mat_dbuild_phi(double*phimat,double phi)
*

* phimat - the 4x4 matrix
* phi - the rotation angle phi (about the X axis in radians)
*
* Build a phi rotation matrix of doubles, (phi, rotation about the X

axis in radians) and return it in phimat. *
*
*
*
*
*
*
*
*
*/

RETURNS
The transformation matrx is returned in the passed array phimat
Note that a 4x4 matrix is returned therefore
"phimat" must be an array of at least 16 doubles.
Furthermore if phimat is then used in a multiplication,
"4" columns must be specified as an argument to mat_dmult().

' mat_dbuild_ident()

* void mat_dbuild_ident(double *ident, int N)
*

Make ident an NxN identity matrix
For example if N equals 3 then

0 0
1 0

0 0 1

will be returned in "ident". Naturally
ident must be an array with at least N*N doubles.

RETURNS

*
*
*/

An NxN identity matrix in "ident"

/*
" mat_ddistance_xyO
*

* double mat_ddistance_xy(double *pntl, double *pnt2)
*

* pntl and pnt2 are arrays containing the X and Y coordinates
* for each of the points in question. mat_ddistance_xy() returns
* the distance (root sum square) between these points.
* (Z if present is ignored)

$Revision: 0.10 $ Jan 1998

MATRX(3) MATRX(3)

* RETURNS
*

* The distance between two points in the XY plane.
*

*/

/*
" mat_ddistance()
*
* double mat_ddistance(double *pntl, double *pnt2)
*
* pntl and pnt2 are arrays containing the X, Y, and Z coordinates
* for each of the points in question. mat_ddistance() returns
* the distance (root sum square) between these points.
*

* RETURNS
*

* The distance between two points in 3 space.
*

*/

/*
" mat_dbuild_rot3()
*
* double *mat_dbuild_rot3(double *mat, double psi, double theta, double phi)
*

Build the 3 angle rotation matrix (rotating
psi about the Z axis,
theta about the Y' axis
phi about the X" axis)

the rotation matrix is returned in the 4x4 matrix argument
"mat" (which is a double precision floating point

array of at least 16 elements).

NOTE: The ordinal axis are not themselves transformed
between rotations. Therefore this function may
NOT be used to create transformation matrices for
DIS Euler angles.

RETURNS

mat or NULL if an error.

SEE ALSO:

mat_dbuild_DISWorld2Entity(),mat_dbuild_DISEntity2World()

/*.
/*.
/*■

float functions */
float functions */
float functions */

$Revision: 0.10 $ Jan 1998

MATRXß) MATRX(3)

/*
" mat_mult()
*
* void mat_mult(float *dest,float *ml,float *m2,int rowsl,int colsl,int rows2)
*
* Matrix multiply [dest] = [ml][m2]
*
* Multiply matrix "ml" by "m2" and store the results in "dest".
*
* ml is a rowsl, by colsl matrix
* m2 is a rows2, by colsl matrix
* dest is a rowsl, by colsl matrix
*
* for example: dest ml m2
* |1 2 3 0| = |1 2 3 0| |1 0 0 0|
* * |0 1 0 0|
* |0 0 1 0|
* |0 0 0 1|
* dest is 1 row by 4 columns
* ml is 1 row by 4 columns
* m2 is 4 rows by 4 columns
*
* In this case the proper call to mat_mult is:
*

* mat_mult(dest, ml, m2, 1,4,4);

*
*/

/*
~ mat_fpm()
*
* void mat_fpm(FILE *fp, float *m,int rows,int cols)
*
* Print a single precision matrix to the file pointed by
* the file pointer fp. m is a matrix with "rows" rows
* and "cols" columns.
* The purpose is to present the matrix in a fairly human
* readable format.
*

* BUGS:
* This is just for a 'popular range' of numbers.
* (It assumes 6 decimal places an no more than 19 digits).
*

* SEE ALSO:
* mat_fwrite()

*/

/*
~mat_j>m()

$Revision: 0.10 $ Jan 1998

MATRX(3) MATRX(3)

* void mat_pm(float *m,int rows,int cols)
*

* Print a single precision matrix to the standard output
* the file pointer fp. m is a matrix with "rows" rows
* and "cols" columns.
* The purpose is to present the matrix in a fairly human
* readable format.
*

* BUGS:
* This is just for a 'popular range' of numbers.
* (It assumes 6 decimal places an no more than 19 digits).
*

* SEE ALSO:
* mat_fpm(), mat_fwrite()
*

*/

/*
~ mat_fwrite()
*

* void mat_fwrite(FILE *fp,float *m,int rows,int cols)
*

* Write a matrix to a file showing more precision
* but in a less human readable format. The purpose
* is for storing matrix contents (which can then be read
* back (by mat_fread()).
*

* BUGS
* Limited to about 21 digits of precision, but you can
* always change the source code if you have, say, a 64 bit
* architecture (with 64 bit single precision floating point
* numbers).
*

* Numbers are converted from their native binary
* format to scientific notation numbers
* Disadvantage: Therefore this may cause common digital to
* real numbers conversion ambiguities.
* Advantage: However this allows portability of your data
* between systems.
*

* SEE ALSO:
* mat_fread(), mat_fpm()
*/

/*
" mat_fread()
*

* int mat_fread(FILE *fp, float *m,int rows,int cols)
*

* Read a matrix from file, storing it internally in the
* (matrix) single precision array "m".

SRevision: 0.10 $ Jan 1998 10

MATRX(3) MATRX(3)

* Stored matrix values are ASCII numbers.
*
* Once a matrix reading is started (from the
* file), only the matrix elements are expected (i.e. NO
* comments are allowed in the file (unless they proceed
* or come before the matrix).
*

* SEE ALSO:
* mat_fwrite()
*/

/*
" mat_build_psi()
*
* void matJ)uild_psi(float*psimat,float psi)
*

psimat - the 4x4 matrix
psi - the rotation angle psi (about the Z axis in radians)

* Build a Psi rotation matrix of floats. (Psi, rotation about the Z
* axis in radians) and return it in psimat.

RETURNS
The transformation matrx is returned in the passed array psimat.
Note that a 4x4 matrix is returned therefore
"psimat" must be an array of at least 16 floats.
Furthermore if psimat is then used in a multiplication,
"4" columns must be specified as an argument to mat_dmult().

*
*

*
*
*
*/

/*
" mat_build_theta()
*
* void mat_build_theta(float*thetamat,float theta)
*
* thetamat - the 4x4 matrix
* theta - the rotation angle theta (about the Y axis in radians)
*
* Build a theta rotation matrix of floats, (theta, rotation about the Y
* axis in radians) and return it in thetamat.
*

RETURNS

The transformation matrx is returned in the passed array thetamat.
Note that a 4x4 matrix is returned therefore
"thetamat" must be an array of at least 16 floats.
Furthermore if thetamat is then used in a multiplication,
"4" columns must be specified as an argument to mat_dmult().

*/

$Revision: 0.10 $ Jan 1998 11

MATRX(3) MATRX(3)

/*
~ mat_build_phi()
*
* void mat_build_phi(float*phimat,float phi)
*

* phimat - the 4x4 matrix
* phi - the rotation angle phi (about the X axis in radians)
*
* Build a phi rotation matrix of floats, (phi, rotation about the X
* axis in radians) and return it in phimat.
*

* RETURNS
* The transformation matrx is returned in the passed array phimat.
* Note that a 4x4 matrix is returned therefore
* "phimat" must be an array of at least 16 floats.
* Furthermore if phimat is then used in a multiplication,
* "4" columns must be specified as an argument to mat_dmult().
*

*/

/*
~ mat_build_ident()
*
* void mat_build_ident(float *ident, int N)
*
* Make ident an NxN identity matrix
* For example if N equals 3 then
*

* 10 0
* 0 1 0
* 0 0 1
*
* will be returned in "ident". Naturally
* ident must be an array with at least N*N floats.
*

* RETURNS
*

* An NxN identity matrix in "ident"
*

*/

/*
" mat_distance_xy()
*
* double mat_distance_xy(float *pntl , float *pnt2)
*

* pntl and pnt2 are single precision floating point arrays
* containing the X and Y coordinates for each of the points
* in question.
* mat_distance_xy() returns the distance (root sum square)
* between these points. (Z if present is ignored)
*

* RETURNS

SRevision: 0.10 $ Jan 1998 12

MATRX(3) MATRXO)

* The distance between two points in the XY plane.
*

*/

/*
~ mat_distance()
*
* double mat_distance(float *pntl, float *pnt2)
*
* pntl and pnt2 are single precision floating point arrays
* containing the X, Y, & Z coordinates for each of the points
* in question.
* mat_distance_xy() returns the distance (root sum square)
* between these points.
*

* RETURNS
*
* The distance between two points in 3 space.
*

*/

/*
" mat_build_rot3()
*
* float *mat_build_rot3(float *mat, double psi, double theta, double phi)
*

* Build the 3 angle rotation matrix (rotating
* psi about the Z axis,
* theta about the Y' axis
* phi about the X" axis)
* the rotation matrix is returned in the 4x4 matrix argument
* "mat" (which is a floating point array of 16 elements).
*
* NOTE: The ordinal axis are not themselves transformed
* between rotations. Therefore this function may
* NOT be used to create transformation matrices for
* DIS Euler angles.
*

* RETURNS
*
* mat or NULL if an error.
*

* SEE ALSO:
*
* mat_build_DISWorld2Enrity(), mat_build_DISEntity2World()
*

*/

/* DIS Transformation functions */
/* DIS Transformation functions */
/* DIS Transformation functions */

$Revision: 0.10 $ Jan 1998 13

MATRX(3) MATRX(3)

/*
■ mat_dbuild_DISEntity2World()
*
* double *mat_dbuild_DISEntity2World(double *matl6,double psi,double theta, double phi)
*
* matl6 points to an array of 16 doubles (which represents a 4x4 homogeneous
* matrix to the "mtrx" library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y', and X"
* axis in order to transform from the DIS World Coordinate System

to the DIS Entity Coordinate system).

Entity Coordinate system:

(Entity's coordinate system used in IEEE 1278.1)
Note that "up" is -z

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

'top'

../_/!•• entity
/ |_| ====== 'front'

I I " ">
_/ 1/ X
/ I

/ I
/
/ I

/ v
/ +z

1/
Geoff Sauerborn

DIS World coordinate system

~ +Z (used in IEEE 1278.1)
The origin at the center of the earth
+Z goes through the north pole.
+x goes through prime meridian at the equator

the earth
########

##########
##########

/ I
/ I

->
X

/
/

$Revision: 0.10 $ Jan 1998 14

MATRXO) MATRX(3)

* /
* 1/
* Y Geoff Sauerborn

*
*
* NOTE: these are the Euler angles which are used to transform from
* the World to Entity coordinate system (even though this
* function uses them to translate from the
* Entity to the World coordinate system.
*
* Returns matl 6 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerborn, geoffs@arl.mil
* However the transformation were derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).

/*
" mat_build_DISEntity2World()
*
♦float *mat_build_DISEntity2World(float *matl6,double psi,double theta, double phi)
*
* matl 6 points to an array of 16 floats (which represents a 4x4 homogeneous
* matrix to the "mtrx" library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y', and X"
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* NOTE: these are the Euler angles which are used to transform from
* the World to Entity coordinate system (even though this
* function uses them to translate from the
* Entity to the World coordinate system.
*

* Returns matl 6 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerborn, geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*

*/

/*
" mat_build_DISWorld2Entity()
*
♦float *mat_build_DISWorld2Entity(float *matl6,double psi,double theta, double phi)

$Revision: 0.10 $ Jan 1998 15

MATRXO) MATRX(3)

*
* matl6 points to an array of 16 floats (which represents a 4x4homogeneous
* matrix to the "mtrx" library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y\ and X"
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* Returns matl 6 on success
* NULL if an error occurred somewhere.
*

* Written by Geoff Sauerborn, geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*

*/

/*
' mat_dbuild_DISWorld2EntityO
*
*double *mat_dbuild_DISWorld2Entity(double *matl6,double psi,double theta, double phi)
*
* matl 6 points to an array of 16 floats (which represents a 4x4 homogeneous
* matrix to the "mtrx" library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS .standard.
* (they represent the successive rotation about the Z, Y', and X"
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* Returns matl 6 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerborn, geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*

*/

/*
' mat_dbuild_DISEntity2World3x30
*
*double *mat_dbuild_DISEntity2World3x3(double *mat9,double psi,double theta, double phi)
*
* mat9 points to an array of 9 doubles (which represents a 3x3
* matrix to the "mtrx" library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.

$Revision: 0.10 $ Jan 1998 16

MATRXO) MATRX(3)

* (they represent the successive rotation about the Z, Y', and X"
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* NOTE: these are the Euler angles which are used to transform from
* the World to Entity coordinate system (even though this
* function uses them to translate from the
* Entity to the World coordinate system.
*

* Returns mat9 on success
* NULL if an error occurred somewhere.
*

* Written by Geoff Sauerborn, geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*

*/

/*
" mat_build_DISEntity2World3x3()
*
*float *mat_build_DISEntity2World3x3(fioat *mat9,double psi,double theta, double phi)
*
* mat9 points to an array of 9 floats (which represents a 3x3
* matrix to the "mtrx" library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y', and X"
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* NOTE: these are the Euler angles which are used to transform from
* the World to Entity coordinate system (even though this
* function uses them to translate from the
* Entity to the World coordinate system.
*

* Returns mat9 on success
* NULL if an error occurred somewhere.
*

* Written by Geoff Sauerborn, geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson® arl.mil).
*

*/

/*
" mat_build_DISWorld2Entity3x3()
*
♦float *mat_build_DISWorld2Entity3x3(float *mat9,double psi,double theta, double phi)

$Revision: 0.10 $ Jan 1998 17

MATRX(3) MATRX(3)

* mat9 points to an array of 9 floats (which represents a 3x3
* matrix to the "mtrx" library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard.
* (they represent the successive rotation about the Z, Y\ and X"
* axis in order to transform from the DIS World Coordinate System
* to the DIS Entity Coordinate system).
*
* Returns mat9 on success
* NULL if an error occurred somewhere.
*
* Written by Geoff Sauerborn, geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).

/*
~ mat_dbuild_DISWorld2Entity3x3()
*
♦double *mat_dbuild_DISWorld2Entity3x3 (double *mat9,double psi,double theta, double phi)

* mat9 points to an array of 9 floats (which represents a 3x3
* matrix to the "mtrx" library procedures).
*
* psi, theta, and phi are the DIS (Distributed Interactive Simulation)
* Euler angles as described in the DIS standard,

(they represent the successive rotation about the Z, Y', and X"
axis in order to transform from the DIS World Coordinate System
to the DIS Entity Coordinate system).

Returns mat9 on success
NULL if an error occurred somewhere.

*
*
*
*
*
*
*
* Written by Geoff Sauerbom. geoffs@arl.mil
* However the transformation were not derived elsewhere
* by others.
* Special thanks to Rich Pearson (pearson@arl.mil).
*

*/

/*
~ mat_calcDISPsiWrtXAxis()
*
* double mat_calcDISPsiWrtXAxis(double x, double y)
*
* Calculate Psi with respect to the X axis.
*
* Using the Missile Coordinate system (DIS Entity Coordinate system).
* find Psi (the clock wise rotation about Z relative to the positive
* X axis, given x,y coordinate of a point in this system.
* x,y is taken to be the end point of a vector whose origin is 0,0.

$Revision: 0.10 $ Jan 1998 18

MATRX(3) MÄTRX(3)

* psi is the "rotation" that this vector makes relative to the X-axis.
* with its origin fixed (at 0,0).
*
* In the xy plane the DIS Entity Coordinate system looks like this:
*

II

-Y

III

X

-X

I <- (Quadrant I)

IV

* returns Psi in radians.
*

* Written by Geoff Sauerborn <geoffs@arl.mil>
*

*/

SEE ALSO
IEEE Standard 1278.1.
[ROGERS] "Mathematical Elements for Computer Graphics", by David F. Rogers, J. Alan Adams., 1990,
ISBN: 0070535299

Author
Geoff Sauerborn <geoffs@arl.mil> , US Army Research Lab. 1995,1996,1997. The DIS transformation
were derived elsewhere by others. Special thanks to Rich Pearson <pearson@arl.mil> who provided the
DIS tranformations to and from world and entity coordinates.

$Revision: 0.10 $ Jan 1998 19

MK_SHM(3) MK_SHM(3)

NAME
shmCreateSharedMem(void), shmGetlD(void), shmlsAttached(void), shmCreateSharedMem(void),
shmGetro(void), shmDestroyO, shmClear_QueryPlaced(), shmClear_QueryAnswered(), shmSet_Query-
PlacedO, shmSet_QueryAnswered(), shmGet_QueryPlaced(), shmGet_QueryAnswered(), shmClear_Tar-
getES_PDU(), shmClear_ShooterES_PDU(), shmClear_Fire_PDU(), shmClear_Detonation_PDU(), shm-
Set_TargetES_PDU(), shmSet_ShooterES_PDU(), shmSet_Fire_PDU(), shmSet_Detonation_PDU(),
shmGet_TargetES_PDU(), shmGet_ShooterES_PDU(), shmGet_Fire_PDU(), shmGet_Detonation_PDU(),
shmSet_TargetID(), shmSet_EventID(), shmSet_Querylype(), shmSet_QueryArgsType(), shmGetJTar-
geüD(), shmGet_EventE)(), shmGet_QueryType(), shmGet_QueryArgsType(), shmSet_DisVersion(),
shmGet_DisVersion(), shmSet_VLResult(), shmSet_mfkPS(), shmSet_prob(), shmGet_VLResult(),
shmGet_mfkPS(), shmGet_prob(), shmClear_ErrorMsg(), shmGet_ErrorMsg()

SYNOPSIS
#include nmk_shm.h"

int shmCreateSharedMem(void); /* allocate shared memory block */
int shmGetlD(void); /* return share memory ID */
Bool shmlsAttached(void); /* return TRUE iff shared memory is attched*/
/* Shared memory manipulators */
int shmCreateSharedMem(void); /* called by Server */
int shmGetlD(void); /* called by Server and passed

* to DisMonitor via tcp socket.
*/

int shmDestroyO; /* called by Server */
int shmClear_QueryPlaced();
int shmClear_QueryAnswered();
int shmSet_QueryPlaced();
int shmSet_QueryAnswered();
int shmGet_QueryPlaced();
int shmGet_QueryAnswered();
int shmClear_TargetES_PDU();
int shmClear_ShooterES_PDU();
int shmClear_Fire_PDU();
int shmClear_Detonation_PDU()
int shmSet_TargetES_PDU();
int shmSet_ShooterES_PDU();
int shmSet_Fire_PDU();
int shmSet_Detonation_PDU();
void * shmGet_TargetES_PDU();
void * shmGet_ShooterES_PDU();
void * shmGet_Fire_PDU();
void * shmGet_Detonation_PDU();

/*
/*

/*

/*
/*
/*
/*

/*
/*
/*
/*

int shmSet_TargetID();
int shmSet_EventID();
int shmSet_QueryType();
int shmSet_QueryArgsType();
int shmGet_TargetID() ;
int shmGet_EventID();
VLS_Token shmGet_QueryType() ;
VLS_Token shmGet_QueryArgsType()

V
V

V
*/
V

/* called by DisMonitor */
called by Server '*/
called by Server */

/* called by DisMonitor
/* called by DisMonitor

called by Server */
/* called by DisMonitor
/* called by DisMonitor
/* called by DisMonitor

/* called by DisMonitor */
called by Server */
called by Server */
called by Server */
called by Server */

/* called by DisMonitor */
/* called by DisMonitor

/* called by DisMonitor */
/* called by DisMonitor

called by Server */
called by Server */
called by Server */
called by Server */

/* called by DisMonitor
/* called by DisMonitor
/* called by DisMonitor */

/* called by DisMonitor */

*/

V

V
V

int shmSet_DisVersion(); /* called by DisMonitor */
const char *shmGet_DisVersion();/* called by Server */

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

int shmSet_VLResult();
int shmSet_mfkPS();
int shmSet_prob();
int shmGet_VLResult();
float* shmGet_mfkPS();
double shmGet_prob();

/* called by DisMonitor */
/* called by DisMonitor */
/* called by DisMonitor */

/* called by Server */
/* called by Server */
/* called by Server */

void shmClear_ErrorMsg(); /* called by Server */
const char *shmGet_ErrorMsg(); /* called by Server */
int shmSet_ErrorMsg(); /* called by DisMon */

DESCRIPTION
Make (and manipulate) Shared Memory. This is a special purpose library. It links the DIS Server portion
of the DIS Lethality Server (the "vlserver" application - see vlserver(l)) with the DIS monitor portion (see
dis_mon(l)).

The functions in this library are "user friendly" in that the shared memory creation is automated (with no
need to maintain track of the shared memory "ID"s. The vlserver establishes the share memory by calling
shmCreateSharedMemO. Later, disjtnon connects (as a client) to vlserver and queries vlserver for the
shared memory ID. Using this ID, dis_mon establishes a connection to the same shared memory location
and closes it's client connection with the vlserver. (This takes place in the vls_link_connect() function
within the dis_mon source code). After this, all further communication between the vlserver and the DIS
Monitor occurs via share memory (through the functions defined in this library).

The purpose for the link between the DIS Server and the DIS Monitor is so that the server may pass vulner-
ability analysis queries on to the DIS Monitor. The DIS monitor then returns the results via the same
shared memory link. The main loop for this process proceeds by having the DIS monitor periodically
check to see if a lethality result query has been "queued" into the shared memory. If so, the DIS monitor
reads the query from shared memory, calls the appropriate VL API function (which will perform the analy-
sis) and then places the result in the shared memory. Once the DIS monitor has completed these steps it
sets a flag (via shmSet_QueryAnswered()) to inform vlserver that query has been answered and is placed in
shared memory. The vlserver is now free to retrieve the answer (and pass it on to the client who requested
it). The following figure maps the sequence of events, and specifies when vlserver or dis_mon access the
shared memory (via these library calls). Access could be either putting data in or coping data out of the
shared memory. The sequence of events proceeds forward as one reads down the page. The line running
down the middle of the page represents the shared memory. The left side of this line shows when the
vlserver (SERVER) accesses shared memory. The right side displays access by the DIS Monitor.

Start

SERVER creates shared memory >|
SERVER attaches self to it >|

| < DisMonitor attaches self
| to shared memory.
I < sets DIS Version

--from this point on queries and answers to those queries may occur-

client queries server ##
(via tcp/ip connection) ##

SERVER places query in
shared memory

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

SERVER sets QueryPlaced

< DisMonitor Sees that
QueryPlaced is set.

< DisMonitor Places answer
to query in shared memory

< DisMonitor Clears
Placed flag (QueryPlaced)

< DisMonitor Sets Query
Answered flag (QueryAnswered)

SERVER Sees that
QueryAnswered is set

SERVER gets answer to query->

SERVER clears QueryAnswered->

server delivers answer ##

to client (via tcp/ip connection)##

Short explanations for the existing mk_shm(3) functions follow. Other functions may have to be added if
vulnerabilities are described in a manner different from the "MFK" methodology or if additional initializa-
tion parameters are needed to complete the vulnerability analysis. Thus far most of the parameters found in
the Entity State, Detonation, and Fire PDUs are provided by mk_shm(3) functions. Functions are
described in the following order
shmCreateSharedMemO
shmDestroyO
shmGetlDO
shmClear_QueryPlaced()
shmClear_QueryAnswered()
shmSet_QueryPlaced()
shmSet_QueryAnswered()
shmGet_QueryPlaced()
shmGet_QueryAnswered()
shmSet_TargetES_PDU()
shmaear_TargetES_PDU()
shmGet_TargetES_PDU()
shmClear_TargetES_PDU()
shmClear_ShooterES_PDU()
shmClear_Fire_PDU()
shmClear_Detonation_PDU()
shmSet_TargetES_PDU()
shmSet_ShooterES_PDU()
shmSet_Fire_PDU()
shmSet_Detonation_PDU()
shmGet_TargetES_PDU()
shmGet_ShooterES_PDU()

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

shmGet_Fire_PDU()
shmGet_Detonation_PDU()
shmSet_TargetID()
shmSet_EventID()
shmGet_TargetID()
shmGet_EventID()
shmSet_DisVersion()
shmGet_DisVersion()
shmGet_QueryType()
shmGet_QueryArgsiype()
shmSet_OueryType()
shmSet_QueryArgslype()
shmSet_VLResult()
shmGet_VLResult()
shmGet_mfkPS()
shmSet_mfkPS()
shmGet_prob()
shmSet_prob()
shm_zero_mem()
shmlsAttachedO
shmClear_ErrorMsg()
shmGetJErrorMsgO
shmSet_ErrorMsg()

/*
~ shmCreateSharedMem()
*
* int shmCreateSharedMem(void)
*
* Establish shared memory for inter process communitcation
* between the Lethality Server and the DIS Monitor
*
* The memory must be large enought to hold
* 1. arguments to the Lethality Data Query.
* 2. answers of resulting from the Lethality Data Query.
* 3. and a few overhead bytes to keep track of when data is read
* for reading.
*
* Arguments (1.) are in the form of a set of PDUs (in
* binary string form - as seen on the UDP net). Currently the
* only arguments needed are a FirePDU, DetonationPDU, and two
* EntityStatePDUs (one for the firer and one for the target).
* If you would like to add more arguments increase NARG_TYPES and
* add to the ArgEnum list. Also, if the addtion includes
* a different type of answer from the server, then add
* that to the AnsTypes union. Any VLSJToken(s) which represent a new
* type of answer(s) is then added as a valid VLS_Token (in vls_toke.h).
* (This vls_token must be inserted in (enum _VLS_Token) somewhere between the
* T_END_OF_T_QTYPE_TOKENS and T_START_OF_T_QTYPE_TOKENS and
* coorsponding entries(s) are added in (char *VLS_TokenString[]).
*
* returns 1 on success, 0 on failure.
*

*/

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

int shmCreateSharedMem()

/*
~ shmDestroy()
*
* int shmDestroy(int id);
*
* shared memory is marked for destruction after the last detached
* process detaches. An attempt is made to detatch the current
* thread from the shared memory.
*
* return 0 on faliure
* 1 on success, (if memory is marked for destruction).
*

V
int shmDestroy(int id);

/*
~ shmGetlDO
*
* int shmGetlD(void)
*
* Returns the shared memory id established by shmCreateSharedMem().
* this is the same id returned by the unix system call shmget().
* Returns -1 if no shared memory was established.
*

V
int shmGetID()

/* */
/* Shared Memory data -- - - */
/* manipulator APIs ■ */
/* - -- - - */

/*
~ shmClear_QueryPlaced()
*
* int shmClear_QueryPlaced(void);

* Clears (sets to FALSE) the QueryPlaced Bool in shared memory.
*
* returns 1 on sucess.
* 0 on failure (likely because shared memory not available)

*/
int shmClear_QueryPlaced(void);

/*
~ shmClear_QueryAnswered()
*
* int shmClear_QueryAnswered(void);
*
* Clears (sets to FALSE) the QueryAnswered Bool in shared memory.
*
* returns 1 on sucess.

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

* 0 on failure (likely because shared memory not available)

*/
shmClear_ .QueryAnswered ()

/*
~ shmSet _QueryPlaced()

* int sh imSet QueryPlacec l(void);

* Sets (assigns TRUE to) the QueryPlaced Bool in shared memory.
*
* returns 1 on sucess.
* 0 on failure (likely because shared memory not available)

*/
int shmSet_QueryPlaced(void);

/*
~ shmSet_QueryAnswered()
*
* int shmSet_QueryAnswered(void);
*
* Sets (assigns TRUE to) the QueryAnswered Bool in shared memory.
*
* returns 1 on sucess.
* 0 on failure (likely because shared memory not available)

V
int shmSet_QueryAnswered(void);

/*
~ shmGet_QueryPlaced()
*
* int shmGet_QueryPlaced(void);
*
* returns 1 (TRUE) if Query data as been Placed in the shared memory.
* 0 (FALSE) if a complete query is not there yet.
* -1 on failure (likely because shared memory not available)

V
int shmGet_QueryPlaced(void);

/*
~ shmGet_QueryAnswered()
*
* int shmGet_QueryAnswered(void);
*
* This function returns the value of a boolean flag in shared memory.
* the flag is set (TRUE) by the function shmSet_QueryAnswered()
* the flag is set (FALSE) by the function shmClear_QueryAnswered().
*
* returns 1 (TRUE) if a placed Query has been answerd by the DIS Monitor
* (and this answer has been placed in shared memory).
* 0 (FALSE) if an answer is not yet there.
* -1 on failure (likely because shared memory not available)
*/

int shmGet_QueryAnswered(void);

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

/*
~ shmSet_TargetES_PDU()
*
* int shmSet_TargetES_PDU(void* bin_arry, int len);
*
* Copies the argument (bin_arry) into shared memory.
* The argument "bin_arry" is a PDU (in binary continious string
* form). "len" is its length.
* This PDU is the Entity State PDÜ of the TARGET (the threatend entity)
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

*/
int shmSet_TargetES_PDU(void* bin_arry, int len);

/*
~ shmClear_TargetES_PDÜ()
*
* int shmClear_TargetES_PDU(void);
*
* Marks as clear the shared memroy array associated with TargetES_PDU
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

*/
int shmClear_TargetES_PDU(void);

/*
~ shmGet_TargetES_PDU()
*
* void * shmGet_TargetES_PDU(int *len) ;
*
* Returns pointer to a PDU (in binary continious string
* form). Its length is returned in "len".
* The PDU is the Entity State PDU of the TARGET (the threatend entity)
*
* RETURNS:
* ptr to (binary string) PDU on sucess.
* NULL on failure, (likely because shared memory not available)
*
* Note
* a returned length of 0 is a good indicator that the
* pdu was not set.
*

*/
void * shmGet_TargetES_PDU(int *len) ;

/*
~ shmClear_TargetES_PDU()
*
* int shmClear_TargetES_PDU(void) ;
*

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

* Marks as clear the shared memroy array associated with TargetES_PDU
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

V
int shmClear_TargetES_PDU(void)

/*
~ shmClear_ShooterES_PDU()
*
* int shmClear_ShooterES_PDU(void);
*
* Marks as clear the shared memroy array associated with ShooterES_PDU
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

V
int shmClear_ShooterES_PDU(void);

/*
~ shmClear_Fire_PDU()
*
* int shmClear_Fire_PDU(void);
*
* Marks as clear the shared memroy array associated with Fire_PDU
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

*/
int shmClear_Fire_PDü(void);

/*
~ shmClear_Detonation_PDU()
*
* int shmClear_Detonation_PDU(void);
*
* Marks as clear the shared memroy array associated with Detonation_PDU
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

*/
int shmClear_Detonation_PDU(void);

/*
~ shmSet_TargetES_PDU()
*
* int shmSet_TargetES_PDU(void* bin_arry, int len);
*

$Revision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

* Copies the argument (bin_arry) into shared memory.
* The argument "bin_arry" is a PDU (in binary continious string
* form). "len" is its length.
* This PDÜ is the Entity State PDU of the TARGET (the threatend entity)
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

V
int shmSet_TargetES_PDU(void* bin_arry, int len);

/*
~ shmSet_ShooterES_PDU()
*
* int shmSet_ShooterES_PDU(void* bin_arry, int len);
*
* Copies the argument (bin_arry) into shared memory.
* The argument "bin_arry" is a PDU (in binary continious string
* form). "len" is its length.
* This PDU is the Entity State PDU of the Shooting Entity (the entity
* who is shooting at the TARGET) - if the Shooting Entity is known).
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

V
int shmSet_ShooterES_PDU(void* bin_arry, int len);

/*
~ shmSet_Fire_PDU()
*
* int shmSet_Fire_PDU(void* bin_arry, int len) ;
*
* Copies the argument (bin_arry) into shared memory.
* The argument nbin_arry" is a PDU (in binary continious string
* form). "len" is its length.
* This "Fire PDU" which describes the weapon launch of the threat munition.
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)

*/
int shmSet_Fire_PDU(void* bin_arry, int len);

/*
~ shmSet_Detonation_PDU()
*
* int shmSet_Detonation_PDU(void* bin_arry, int len);
*
* Copies the argument (bin_arry) into shared memory.
* The argument "bin_arry" is a PDU (in binary continious string
* form). "len" is its length.
* This "Detonation PDU" of the munition threating the target.

SRevision: 0.22 $ June 1998

MK_SHM(3) MK_SHM(3)

* (Which describes the munitions impact or detonation.)
*
* RETURNS:
* 1 is on sucess.
* 0 on failure (likely because shared memory not available)
V

int shmSet_Detonation_PDU(void* bin_arry, int len);

/*
~ shmGet_TargetES_PDU()
*
* void * shmGet_TargetES_PDU(int *len);
*
* Returns pointer to a PDU (in binary continious string
* form). Its length is returned in "len".
* The PDU is the Entity State PDU of the TARGET (the threatend entity).
*
* RETURNS:
* ptr to (binary string) PDU on sucess.
* NULL on failure, (likely because shared memory not available)
*/

void * shmGet_TargetES_PDU(int *len) ;

/*
~ shmGet_ShooterES_PDU()
*
* void * shmGet_ShooterES_PDU(int *len);
*
* Returns pointer to a PDU (in binary continious string
* form). Its length is returned in "len".
* This PDU is the Entity State PDU of the Shooting Entity (the entity
* who is shooting at the TARGET) - if the Shooting Entity is known).
*
* RETURNS:
* ptr to (binary string) PDU on sucess.
* NULL on failure, (likely because shared memory not available)
*/

void * shmGet_ShooterES_PDU(int *len);

'/*
~ shmGet_Fire_PDU()
*
* void * shmGet_Fire_PDU(int *len) ;
*
* Returns pointer to a PDU (in binary continious string
* form). Its length is returned in "len".
* This "Fire PDU" which describes the weapon launch of the threat munition.
*
* RETURNS:
* ptr to (binary string) PDU on sucess.
* NULL on failure, (likely because shared memory not available)
V

void * shmGet_Fire_PDU(int *len) ;

$Revision: 0.22 $ June 1998 10

MK_SHM(3) MK_SHM(3)

/*
~ shmGet_Detonation_PDU()
*
* void * shmGet_Detonation_PDU(int *len);
*
* Returns pointer to a PDU (in binary continious string
* form). Its length is returned in "len".
* This "Detonation PDU" of the munition threating the target.
* (Which describes the munitions impact or detonation.)
*
* RETURNS:
* ptr to (binary string) PDU on sucess.
* NULL on failure, (likely because shared memory not available)

V
void * shmGet_Detonation_PDU(int *len);

* /
~ shmSet_TargetID()
*
* int shmSet_TargetID(int arry3[]);
*
* Set target entity ID in shared memory.
* The function's argument (int arry3[]) is an array of
* 3 integers, (the site, application, and ID) which
* together serve to identify an entity in the DIS protocol.
*
* return 1 on success
* 0 on failure.
V

int shmSet_TargetID(int arry3[]);

/*
~ shmSet_EventID()
*
* int shmSet_EventID(int arry3[]);
*
* Set the DIS event ID in shared memory.
* The function's argument (int arry3[]) is an array of
* 3 integers, (the site, application, and ID) which
* together serve to identify an event the DIS protocol.
*
* return 1 on success
* 0 on failure.
*/

int shmSet_EventID(int arry3[]);

/*
~ shmGet_TargetID()
*
* int shmGet_TargetID(int arry3[]);
*
* Get the DIS event ID from shared memory.
* The function's argument (int arry3[]) is an array of
* 3 integers. These 3 integers shall be set within the function

$Revision: 0.22 $ June 1998 11

MK_SHM(3) MK_SHM(3)

* (to the site, application, and ID) of the DIS Target EntitylD
* in shared memory.
*
* return 1 on success
* 0 on failure.
V

int shmGet_TargetID(int arry3[]);

/*
~ shmGet_EventID()
*
* int shmGet_EventID(int arry3[]);
*
* Called by DisMonitor.
*
* Get the DIS event ID from shared memory.
* The function's argument (int arry3[]) is an array of
* 3 integers. These 3 integers shall be set within the function
* (to the site, application, and ID) of the DIS EventID in shared
* memory.
*
* return 1 on success
* 0 on failure.
*/

int shmGet_EventID(int arry3[]);

/*
~ shmSet_DisVersion();
*
* int shmSet_DisVersion (char *str);

* Copies string into the "DIS Version" location of shared memory.
*
* returns 1 if some or all of the string was copied.
* returns 0 if none of the string could be copied.
V

int shmSet_DisVersion(char *str) ;

/*
~ shmGet_DisVersion();
*
* const char *shmGet_DisVersion(); - called by Server
*
* Copies string into the "DIS Version" location of shared memory.
*
* returns ptr to static shared memory holding "DIS Version"
* returns NULL if none is the memory could not be accessed.
*/

const char *shmGet_DisVersion();

/*
~ shmGet_QueryType()
*
* VLS_Token shmGet_QueryType(void);

$Revision: 0.22 $ June 1998 12

MK_SHM(3) MK_SHM(3)

* Get the QueryType from shared memory.
*
* Called by DisMonitor.
*
* The QueryType specifies the form in which the query answer
* is to appear. As of this writing, some of the
* valid query types are:
*
* T_QTYPE_mfkDIS_Result
* T_QTYPE_mfkDIS_ProbAll
* T_QTYPE_mfkDIS_ProbK
* T_QTYPE_mfkDIS_ProbMF
* T_QTYPE_mfkDIS_ProbF
* T_QTYPE_mfkDIS_ProbM
* T_QTYPE_mfkDIS_ProbNoDamage
*
* return a valid QueryType VLS_Token on success
* T_ERROR on failure.

V
VLS_Token shmGet_QueryType(void);

/*
~ shmGet_QueryArgsType()
*
* VLS_Token shmGet_QueryArgsType(void);
*
* Get the QueryArgsType from shared memory.
*
* Called by DisMonitor.
*
* The QueryArgsType specifies the arguments which are used
* in setting up the initial conditions for a vulnerability
* assessment. As of this writing, some of the
* valid QueryArgsType's are:
*
* T_VLS_QUERY_TYPE_MFK_BINARY_PDUS - expect binary pdu args
* T_VLS_QUERY_TYPE_MFK_DIS_IDS - expect ID args
*
* return a valid QueryArgsType VLSJToken on success
* T_ERROR on failure.
V

VLS_Token shmGet_QueryArgsType(void);

/*
~ shmSet_QueryType()
*
* int shmSet_QueryType(VLS_Token type);

* Set the QueryType in shared memory.
*
* Called by Server.
*
* The QueryType specifies the form in which the query answer

$Revision: 0.22 $ June 1998 13

MK_SHM(3) MK_SHM(3)

* is to appear. As of this writing, some of the
* valid query types are:
*
* T_QTYPE_mfkDIS_Result
* T_QTYPE_mfkDIS_ProbAll
* T_QTYPE_mfkDIS_ProbK
* T_QTYPE_mfkDIS_ProbMF
* T_QTYPE_mfkDIS_ProbF
* T_QTYPE_mfkDIS_ProbM
* T_QTYPE_mfkDIS_ProbNoDamage
*
* return 1 on success.
* 0 on failure.
*/

int shmSet_QueryType(VLS_Token type);

/*
~ shmSet_QueryArgsType()
*
* int shmSet_QueryArgsType(VLS_Token type);
*
* Set the QueryArgsType in shared memory.
*
* Called by Server.
*
* The QueryArgsType specifies the arguments which are used
* in setting up the initial conditions for a vulnerability
* assessment. As of this writing, some of the
* valid QueryArgsType's are:
*
* T_VLS_QUERY_TYPE_MFK_BINARY_PDUS - expect binary pdu args
* T_VLS_QUERY_TYPE_MFK_DIS_IDS - expect ID args
*
* return 1 on sucess.
* 0 on failure.
*/

int shmSet_QueryArgsType(VLS_Token type);

/*
~ shmSet_VLResult()
*
* int shmSet_VLResult(VL_Result result, int flag);
*
* return 1 on sucess.
* 0 on failure.
*/

int shmSet_VLResult(VL_Result result, int flag);

/*
~ shmGet_VLResult()
*
* int shmGet_VLResult(VL_Result *result, int *flag);

* Sets *result and *flag to the VLResult in shared memory and source

$Revision:0.22$ June 1998 14

MK_SHM(3) MK_SHM(3)

* flag respectively. (See the vl API layer of the VL Data manager.
*
* returns 1 on success;
* 0 on failure
V

int shmGet_VLResult(VL_Result *result, int *flag);

/*
~ shmGet_mfkPS()
*
* float *shmGet_mfkPS(float probs5[]);
*
* return probs5 on sucess.
* NULL on failure.
V

float *shmGet_mfkPS(float probs5[]);

/*
~ shmSet_mfkPS()
*
* int shmSet_mfkPS(float probs5[]);
*
* return 1 on sucess.
* 0 on failure.
*/

int shmSet_mfkPS(float probs5[]);

/*
~ shmGet_prob()
*
* double shmGet_prob(void);
*
* returns WHATEVER is in that share memory location.
*

*/
double shmGet_prob(void);

/*
~ shmSet_prob()
*
* int shmSet_prob(double prob);
*
* return 1 on sucess.
* 0 on failure.
*/

int shmSet_prob(double prob);

/*
~ s hm_z ero_mem()
*
* void shm_zero_mem(int unused)
*
* This function is called when a HUP signal is recieved

$Revision: 0.22 $ June 1998 15

MK_SHM(3) MK_SHM(3)

* by the vlserver. It sets all of the shared memory
* area to zero (0).
*

*/
void shm_zero_mem(int unused);

/*
~ shmIsAttached()
*
* Bool shmlsAttached(void)
*
* Return 1 (TRUE) if shared memory is currently attached.
* Return 0 (FALSE) if not.
V

Bool shmlsAttached(void);

/*
~ shmClear_ErrorMsg()
*
* void shmClear_ErrorMsg(void);
*
* Called by Server to effectively clear the error message buffer.
* (so that the next call to shmGet_ErrorMsg() returns NULL;
*

V
void shmClear_ErrorMsg(void);

/*
~ shmGet_ErrorMsg()
*
* const char *shmGet_ErrorMsg(void);
*
* Called by Server to fetch the null terminated string
* message placed in the error message buffer.
* (presumably to pass on to the client).
*
* See Also: DIS Server utility APIs cprint(3), rpt_error(3)
*
* returns pointer to the error message string.
* NULL if the error message string is not set.
* (i.e. there is no error message).
*

V
const char *shmGet_ErrorMsg(void);

/*
~ shmSet_ErrorMsg()
*
* int shmSet_ErrorMsg(char *str_error_msg) ;
*
* Called by DIS Monitor to set the null terminated string
* message placed in the error message buffer.
* (presumably to pass on to the client by the server).

$Revision: 0.22 $ June 1998 16

MK_SHM(3) MK_SHM(3)

* See Also: DIS Server utility APIs cprint(3), rpt_error(3)
*
* returns 1 (TRUE) if string was copied.
* 0 (FALSE) not (shared memmory was not accessable).
*
* NOTES:
* A maximum of the system defined BUFSIZ bytes
* can be placed into the error buffer.
* The server may pass even fewer bytes onto the client.
* Generally, the server will strive to send less than
* 1024 bytes to a client at in any one message.
*/

int shmSet_ErrorMsg(char *str_error_msg);

SEE ALSO
Other DIS Lethality server components:

vl(3), vlserver(l), dis_mon(l), vlexample_client.c - an undocumented example client program provided
with the DIS Lethality server (look in $VLS_HOME/src/Server).

Author
Geoff Sauerborn <geoffs@arl.mil> , US Army Research Lab. 1997,1998.

SRevision: 0.22 $ June 1998 17

SCAN(3) SCAN(3)

NAME
scan_int, scan_double, scanjong, scan_next_white, scan_skip_cmnt, scan_is_eof, scan_linenum,
fscan_int, fscan_double, fscanjong, fscan_next_white, fscan_skip_cmnt, fscan_is_eof, fscanjinenum -
general scanning routines (for scanning ascii input).

SYNOPSIS
#include "scanner.h"

/* Initialization I Closing routines: *l

int fscan_reg(FILE *fp, char »filename);
FILE *£scan_fopen(char *filename,char *typeopen);
FILE *fscan_fopen_wMsgOnErr(char *filename,char *typeopen,char *callingfunc);
int fscan_unreg(FELE *fp);
int fscan_fclose(FILE *fp);

/* File status functions: */

const char *fscan_filename(FILE *fp);
int fscan_linenum(FILE *fjp);
int scan_linenum(void);
int scan_is_eofO;
int fscan_is_eof(FILE *fp);

/* Read head movement functions: *l

int scan_next_white(void);
int fscan_next_white(FILE *fp);
int fscan_skip_cmnt(FILE *Q>);
int scan_skip_cmnt(void);
/* ^Experts only* - fscan_getc(), fscan_ungetc(), scan_getc(), scan_ungetc(), *BY-PASSES* COMMENT &
white space filtering. */

int fscan_getc(FILE *fp);
int scan_getc(void);
int fecan_ungetc(int c, FILE *fp);
hit scan_ungetc(int c);

/* Read head movement (and data interpretation) functions: */

int fecan_int(FILE *fp);
int scan_int(void);
double fecan_double(FILE *tp);
double scan_doubIe(void);
long fecan_long(FILE *^p);
long scan_long(void);

/* Read head movement (and strings/line scanning) functions: */

int fecan_quoted_string(FILE *tp, char *bufi, int buffer_size);
int scan_quoted_string(char *buff, int buffer_size);
int fgetline(FILE *fp,char stringf] 4nt limit);
char *scan_string(char *bu^ int buffsize);
char *fscan_string(FILE *fp, char *buff, int buffsize);

SRevision: 0.11 $ 17Junl998

SCAN(3) SCAN(3)

int fccan_gets(FILE *fp, char *s, int n);
int scan_gets(char *s, int n);

/* String operating functions: *l

char *sscan_skip_white(char* str);
char *sscan_next_white(char* str);
int sscan_int(char *str);
double sscan_double(char *str);
void sscan_strip_quotes(char *str);
void sscan_add_quoted_quotes(char *str);

DESCRIPTION
This library provides general scanning functions with internal input line number tracking.

Line number tracking: It is important to use fscan_unregO (or fccan_fcloseO) when finished with a file.
This is because if a file is closed outside of the scanner library without notifying the library (via
fecan unregO) then on many operating systems it it likely the next file opened will have the same FILE
pointer, hence, the scanner library will think it is continuing to operate the on the original file (and the line
numbers reported will be incorrect).

fscan_fopenO , or fccanjregO must be used to open and register a file in order to track line numbers and
file names. All other library function may still be used to scan through a file, however if fscan_reg() and
fscan_fopen() are not used, then fscan_filenameO will not be able to return the correct filename. All rou-
tines keep track of each new file pointer fp sent to the library. In this way information can be retrieved
about the current line number and EOF status of any file (via the fscanJinenumO and fecan_is_eofO func-
tions.

♦WARNING* fscan_getc(FILE *fp), and scanjgetcO bypass comment and white-space filtering. These
should only by used by expert experts.

BUGS
Really "just special features". fscan_linenum(fp) returns the current line number for the opened file pointed
to by file pointer fp. In this way the user can report line numbers associated with read errors.
fscanJinenumO returns an int, so files with more than INT_MAX lines, will have a unpredictable value
returned.

A maximum of SCANNERLIB_OPEN_FILES_TRACKED files are monitored. (If a user wants to track
more than SCANNERLIB_OPEN_FILES_TRACKED files, the library will need recompiling).

Unless fscanjinregO is called, scanner library functions cannot tell when a file is closed. If the scanner
library does not know when the file is closed memory used by the library is not recycled. If a file is closed
without informing the library (via fscanjinregO or fccan_fcloseO) and then a new file is opened and that
new file has the same file pointer (FILE*) value as the (now) closed first file, then the newly opened file
will incorrecdy be tracked as if it were the old file (and its first reported linenumber will equal the last
linenumber read from the original file).

Further details on library functions:

Initialization and closing routines:
/*
" fscan_regO

$Revision: 0.11 $ 17Junl998

SCAN(3) SCAN(3)

* int fscan_reg(FILE *fp, char »filename);
*

* Register a file pointer (fp) (and optional file name (filename)
* with the scanner library.
* Once registerd, fscan_linenum() and fscan_filename() can be
* used to report the current line number and the file name
* being read.
* If filename is passed as NULL, then the "UNKNOWN_FILE_NAME"
* is used to report the filename (via: fscan_filename()).
*

* returns an integer >= 0 on success.
* a negative integer on failure.
*

*/

/*
" fscan_fopen()
*
* FILE *fscan_fopen(char »filename, char *typeopen)
*

* attempt to open file "filename", for the purpose of "typeopen"
* (* these two args are passed directly to fopen() *)
* if successful, the file is then registered into the scanner library.
* (* via fscan_reg() *)

* returns FILE pointer to the opened file on success.
* NULL on failure.
*/

/*
~ fscan_fopen_wMsgOnErr()
*

* FILE *fscan_fopen_wMsgOnErr(char *filename, char *typeopen, char *callingfunc)
*
* the function behaves like fscan_fopen() with the addition of
* printing error message to stderr if file could not be opened.
* the messaged are either:
* "fscan_fopen_wMsgOnErr(): called with NULL arg(s)"
* or "CallingFunctionName(): could not open "file" for "r".
*

* (Where "CallingFunctionNameO" represents the string pointed to by
* char *callingfunc, the argument passed to this function).
*

* returns a FILE pointer to the opened file on success.
* NULL on failure.
*/

/*
~ fscan_unreg()
*

* int fscan_unreg(FILE *fp)
*

$Revision: 0.11 $ 17 Jun 1998

SCAN(3) SCAN(3)

* unregister a file from the scanner library.
* (but do not attempt a close of the file stream).
*
* return 0 if the if successful close.
* EOF is there is an error.
*
* (passing a NULL file pointer "fp" or a
* file pointer that was never registered
* [via fscan_fopen_wMsgOnErr() or fscan_reg()]
* are errors.)
*
*/

/*
~ fscan_fclose()
*
* int fscan_fclose(FILE *fp)
*
* close a file and unregister it with the scanner library.
*
* return 0 if the if successful close.
* EOF is there is an error.
*
* (passing a NULL file pointer "fp" or a
* file pointer that was never registered
* [via fscan_fopen_wMsgOnErr() or fscan_reg()]
* are errors.)
*
*/

Functions to maintain and track file status information:

/*
~ fscan_linenum()
*
* int fscan_linenum(FELE *fp)
*
* Returns the current line number for the
* opened file pointed to by file pointer "fp".
* In this way the user can report line numbers associated with
* read errors.
*
* fscan_linenum() returns an int, so files with more
* than DMT_MAX lines, will have a unpredictable value returned.
*
*/

scan_linenum() is equivalent to fscan_linenum(stdin)

/*
" fscan_is_eof()
*
* int fscan_is_eof(FILE *fp)

* Determine if the file associated with the file pointer (fp)

SRevision: 0.11 $ 17 Jun 1998

SCAN(3) SCAN(3)

* is at the end-of-file. (Has it's read head at the end-of-file).
*
* Return 1 if at EOF.
* otherwise return 0.
*/

scan_is_eof() is equivalent to fscan_is_eof(stdin)

/*
" fscan_filename()
*

* const char *fscan_filename(FILE *fp)
*
* returns pointer to the string file name registered via fscan_reg().
* or NULL upon an error.
* (such as the name or file pointer (fp) was never registered).
* ;/

Read-head movement functions.

/*
" fscan_next_white()
*

* int fscan_next_white(FILE *fp)
*

* For the file associated with (fp). move it's read head
* to the next "whitespace" character.
*

* See Also:
* isspace(3)
*/

scan_next_white() is equivalent to fscan_next_white(stdin)

/*
" fscan_skip_cmnt()
*

* fscan_skip_cmnt(FILE *fp)
*

* Move the read head past comments (lines beginning with a pound #)
* and any white space. That is, bring the read head to the first
* non-comment, non-whitespace line. (This might be an EOF).
*

* Returns the next character to be read or
* EOF if at end of file.
*

* NOTES:

* All comments are denoted by a '#' as the first character of a line.
* There is currently library function to change the comment character.
*/

$Revision: 0.11 $ 17 Jun 1998

SCAN(3) SCAN(3)

scan_skip_cmnt() is equivalent to fscan_next_white(stdin)

/*
" fscan_getc()
*

* int fscan_getc(FILE *fp);
*
* Read the next character in the file (move the read-head forward).
*

* return the next character.
* return EOF if at file end.
*
* *WARNING* this routine by-passes comment and white-space
* filtering and should only by used if you know
* what you are doing... (you probably do).
*

*/
scan_getc() is equivalant to fscan_getc(stdin)

/*
~ fscan_ungetc();
*
* int fscan_ungetc(int c, FILE *fp);
*
* Place the character "c" , back into the input stream
* of the file associated with the file pointer (fp).
*
*

*/
scan_ungetc(c) is equivalent to fscan_ungetc(c,stdin)

Other'read-head movement functions (with data interpretation).

/*
" fscan_int()

* int fscan_int(FILE *fp)

* Scan the input stream (fp) and attempt to interpret the next character
* string as an integer. Any white space and comment lines
* (see fscan_skip_cmnt() are skipped prior to the attempted interpretation.
*

* Returns
* the integer if successful.
*
* if unsuccessful, the returned value is undefined and
* an error message is printed.
*

*/
scan_int() is equivalent to fscan_int(stdin)
fscan_double() is similar except the next floating point number is returned.
scan_double() is equivalent to fscan_double(stdin).
fscan_long() is similar except the next long is returned.

$Revision: 0.11 $ 17 Jun 1998

SCAN(3) SCAN(3)

scan_long() is equivalent to fscanjong(stdin).

/*
~ fscan_quoted_string(FILE *fp, char *buffer, int buffer_size)
*

* Read a quoted string from the input stream
* "this is an example" and place it in buffer.
* fscan_quoted_string() will treat all lines ending in the
* single backslash character (\)
* as a continuation line.
*

* buffer is filled with the string (to include quotes) up to
* buffer_size characters.
*

* White space an commented lines are skipped prior
* to reading the quoted string.
*

* returns 1 on success,
* 0 on failure, (such as no quoted string found).
*/

scan_quoted_string() is is equivalant to scan_quoted_string(stdin)

/*
" fgetlineO
*

* int fgetline(FILE *fp, char *string , int limit)
*

* Read from the file stream pointed to by "fp".
* place the contents up to (and including) the first
* newline character V.
*

* Characters read (and placed
* into the buffer "string") and null terminates the
* buffer (with \0 after the last character read).
* No more than "limit"-l characters will be placed
* into the buffer "string".
*

* RETURNS the number of characters placed into "string"
* when "limit" is not reached. When limit
* is reached, then "limit" is always returned
* even though "limit"-l characters will have
* been placed in the buffer.
*

* EOF is returned if EOF is the first character read.

* adopted from the K&R getlineO by Geoff Sauerborn.

* See also fgets(3)
*

*/

$Revision: 0.11 $ 17 Jun 1998

SCAN(3) SCAN(3)

/*
~fscan_string()
*
* char *fscan_string(FILE *fp, char *buff, int buffsize)
*

* Reads a white space delimited string, returns it in
* the buffer "buff", no more than "buffsize"-!
* characters will be placed in "buff".
*

* RETURNS pointer to string that was read.
* if no string found before EOF, (or just EOF seen) then
* NULL is returned.
*/

scan_string(b, bsz) is equivalent to fscan_string(stdin,b,bsz)

/*
" fscan_gets()
*

* int fscan_gets(FILE *fp, char *buff, int n)
*
* fscan_gets() is used to read the rest of a line
* [from the fp to the next occurrence of
* END-OF-LINE (0
* or comment character
* orEND-OF-FILE]
*
* all read characters are placed into buff.
* no more than n chars are read. The buffer is null terminated.
*

* RETURNS
* the number of characters read or EOF if END-OF-FILE is read.
*

* If the limit "n" is reached, then n is always returned
* even though n-1 characters will have been placed
* in the buffer.
*

*/
scan_gets(str, n) is equivalent to fscan_gets(stdin,str,n)

Some string equivalent functions (similar to other library functions,
however they operate on strings not file streams):

/*
~ sscan_skip_white()
*

* char *sscan_skip_white(char* str)
*

* Scan the passed null terminated character string array (str).

SRevision: 0.11 $ 17 Jun 1998

SCAN(3) SCAN(3)

*
* Return the address of the first non-white character.
* if there is only white space in the string,
* then the address of the terminating NULL is returned.
* NULL is returned if the str is NULL.
*/

/*
" sscan_next_white()
*
* char *sscan_next_white(char* str)
*
* return the address of the next white space character in the string str.
* NULL is returned on failure or end-of-string is reached
* without finding a white space character.
*

* see also: isspace(3)
*/

/*
" sscan_int()
*

* int sscan_int(char *str);
*

* read and return int from the string str.
*

* RETURNS
* the scanned integer value.
* If an integer is not scanned,
* an error message is printed and the
* is returned.

*/

/*
" sscan_double()
*

* double sscan_double(char *str);

* read and return double from the string str.
*

* RETURNS
* the scanned floating point number value.
* If number cannot be scanned,
* an error message is printed and the
* 0 is returned.
*

*/

/*

" sscan_strip_quotes()

$Revision:0.11$ 17Junl998

SCAN(3) SCAN(3)

* void sscan_strip_quotes(char *str)
*
* remove quotes from a string, (but handle quoted quotes i.e.
*

*/

/*
" void sscan_add_quoted_quotes(char *str)
*

* add "before any quotes. " ->becomes->
* returns a pointer to a static character buffer
* (which will be over-written on next call).
* The internal buffer is BUFFSIZE in length.
* The enquoted string is in this buffer.
* I

SEE ALSO
gets(3), getc(3), ungetc(3), sscanf(3), scanf(3), strtok(3)

AUTHOR
Geoff Sauerborn <geoffs@arl.mil> , US Army Research Lab. 1995,1996,1997,1998.

$Revision: 0.11 $ 17 Jun 1998 10

VL(3) VL(3)

NAME
vl_mfk_ArlDIS_Result_NoNet, vl_mfk_ArlDIS_ProbAll_NoNet, _vl_mfk_ArlDIS_ProbM_NoNet,
_vl_mfk_ArlDIS_ProbMF_NoNet, _vl_mfk_ArlDIS_ProbF_NoNet, _vl_mfk_ArlDIS_ProbK_NoNet,
_vl_mfk_ArlDIS_ProbNoDamage_NoNet

vl_mfk_binaryDIS_Result_NoNet, vl_mfkJ>inaryDISJProbAll_NoNet, _vljrofk_binary-
DIS_ProbK_NoNet, _vl_mfk_binaryDIS_ProbMF_NoNet, _vl_mfk_binaryDIS_ProbF_NoNet,
_vl_mfk_binaryDIS_ProbM_NoNet, _vl_mfk_binaryDIS_ProbNoDamage_NoNet

vl_mfkDIS_Result, vl_mfkDIS_ProbAll, _vl_mfkDIS_ProbK, _vl_mfkDIS_ProbMF, _vl_mfkDIS_ProbF,
_vl_mfkDIS_ProbM,_vl_mfkDIS_ProbNoDamage

_vl_drandom, vl_GetResultErrorValue, vl_mfk_directFireIsAHit, VL_Result VL_mfkDIS_ResultGeneri-
cRandomDraw

SYNOPSIS
#include <vl.h>
/* vl_mfk_ArlDIS...() functions */
VL_Result vl_mfk_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, ...);
float* vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, ...);
double _vLmfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ...);

/* vl_mfk_binaryDIS...() functions */
VL_Result vl_mfk_binaryDIS_Result_NoNet(int *flg, VLSetParamJ itype, ...);
float* vl_mfk_binaryDIS_ProbAll_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_binaryDIS_ProbK_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_binaiyDIS_ProbMF_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_binaryDIS_ProbF_NoNet(VLSeff,aram_t itype, ...);
double _vl_mfk_binaryDIS_ProbM_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_binaryDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ...);

/* vl_mfkDIS...() functions */
/* DisID * an array of 3 16-bit unsigned integers (Uintl6[3]) */
VLJResult vl_mfkDIS_Result(int*flag, DisID *entityE), DisID *eventID);
float* vl_mfkDIS_ProbAll(DisID *entityID, DisID *eventID);
double _vl_mfkDIS_ProbK(DisID «entitylD, DisID *eventID);
double _vl_mfkDIS_ProbMF(DisID *entityID, DisID *eventID);
double _vl_mfkDIS_ProbF(DisID *entityID, DisID *eventID);
double _vl_mfkDIS_ProbM(DisID *entityID, DisID *eventID);
double _vl_mfkDIS_ProbNoDamage(DisID *entityID, DisID *eventID);

/* vl_...() Utility functions */
void _vl_drandom_seed(int seed);
double _vl_drandom(void);
int vl_GetResultErrorValue(void);
int vl_mfk_directFireIsAHit(DetonationResult DIS_det_result);
VL_Result VL_mfkDIS_ResultGenericRandornDraw(void);

$Revision: 0.4 $ June 1998

VL(3) VL(3)

DESCRIPTION
The vl API layer is used for a particular class of vulnerability / lethality methodology (or taxonomy). A
vulnerability / lethality methodology is a means by which one divides the set of all possible outcomes for a
vulnerability result. The current API only includes the Mobility, Firepower, Catastrophic (MFK) Kill result
set. In this set the only possible outcomes of a lethal result are:

Outcome Meaning

MKILL
FKILL
MFKILL
KKILL
NODAMAGE

Mobility Kill only.
Fire Power Kill only.
Both Mobility and Fire Power Kills.
Catastrophic Power Kill
Probability that no additional damage occurs.

Application programs call an API. They pass enough information to describe the initial conditions of the
vulnerability calculation. Internally the VL API will set the appropriate parameters in the VLparam layer
(see vlparam(3)). Then the VL API will call the appropriate vulnerability "lookup" function (see
db_tbl_reader_funcO from the DIS lethality server's db(3) layer) and return the results.

There are three sets of MFK APIs. Each set may be used to retrieve the equivalent V/L results. Which API
is selected for use depends on which inputs are expected by a particular API. The inputs required by the
three sets are:

API layer name Type of input expected

vl_mfk_binaryDIS_...

vl_mfk_ArlDIS_...

vl_mfkDIS_...

DIS PDUs are input. The PDU format is
a continuous binary array containing the
DIS PDU data as specified in the standard
IEEE 1278.1
DIS PDUs are input The PDU format is

' a data structure particular to the ARL DIS
Manager.
Input comprises of the DIS Entity ID of the
entity whose vulnerability is being assessed,
and the DIS ID of the munition detonation event
which is of interest.

API layer names in the table above indicate the first sequence of characters in the name of the indicated
functions. Most of the functions are actually proceeded by an underscore (J. If the application program is
monitoring the DIS environment then one of the "vl_mfkDIS..." APIs might be the best choice of APIs. If
the calling application is a client to the ARL DIS Manager (see dis_mgr(l)), then it might be most con-
venient to use the "vl_mfk_ArlDIS_..." set of functions.

Synopsis of the API functions are now given in the following order:

 vl_mfkDIS...() functions */ /*
VL_Result vl_mfkDIS_Result(int*flag, DisID *entityID, DisID *eventTD);
float* vl_mfkDIS_ProbAll(DisID *entityID, DisID *eventED);
double _vl_mfkDIS_ProbK(DisID *entityID, DisID *eventID);
double _vl_mfkDIS_ProbMF(DisID *entityID, DisID *evenÜD);
double _vl_mfkDIS_ProbF(DisID *entityH>, DisID *eventID);
double _vl_mfkDIS_ProbM(DisID *entityID, DisID *eventTD);
double _vl_mfkDIS_ProbNoDamage(DisID *entityID, DisID *eventID);
/* -vl_mfk_ArlDIS...() functions */
VLJResult vl_mfk_ArIDIS_Result_NoNet(int*flg, VLSetParam_t itype, ...);
float* vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParamJ itype, ...);
double _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, ...);

$Revision: 0.4 $ June 1998

VL(3) VL(3)

double _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ...);
/* vl_...() Utility functions */
VLJResult vl_mfk_binaryDIS_Result_NoNet(int *flg, VLSetParam_t itype, ...);
float* vl_mfk_binaryDIS_ProbAH_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_binaiyDIS_ProbK_NoNet(VLSetParam_t itype, ...);
double _vl_infk3inaiyDIS_ProbMF_NoNet(VLSetParam_t itype, ...);
double _vl_mflc_binaryDIS_ProbF_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_binaryDIS_ProbM_NoNet(VLSetParam_t itype, ...);
double _vl_mfk_binaryDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ...);
/* vl_mfk_binaryDIS...() functions */
void _vl_drandom_seed(int seed);
double _vl_drandom(void);
int vl_GetResultErrorValue(void);
int vl_mfk_directFireIsAHit(DetonationResult DIS_det_result);

/* - vl_mfkDIS. . . () functions */
/*

~ vl_mfkDIS_Result()
*
* int vl_mfkDIS_Result(int *source, DisID *entityID, DisID *eventID)
*
* This function returns the result of the detonation with
* identification "eventID" verses the target whose DIS entity ID
* is "entitylD".
*
* The type DisID is a pointer to an array of 3 16-bit integers.
* "eventID" refers to the identification used to denote a
* fire/detonation event sequence in DIS (i.e. the "Event ID" field
* of a DIS Detonation PDU), while "entitylD refers to the
* identification used to denote an entity for a particular DIS
* exercise (i.e. the "entity identification" field of the Entity

* State PDU.
*

* RETURNS:
*
* The FLAG (*flg) parameter is always set. (See below).
* The function will always return one of the following results:
*
* PS_MFK_M
* PS_MFK_F
* PS_MFK_MF
* PS_MFK_K
* PS_MFK_NODAMAGE

* PS_ERROR
*
*

* The naming convention for these results is as follows:
*

* #1_#2_#3
*

$Revision: 0.4 $ June 1998

VL(3) VL(3)

* #1 is "PS_" (meant to imply "Probability Space")
* #2 is used to indicate the analysis method being applied.
* (in this case the analysis method is to divide the probability
* space between the M,F,K kills (and combinations) as well as the
* implied No Damage possibility).
* #3 is used to indicate a particular event in that space.
*
* Hypothetically, there may be other results returned depending on what is
* defined as the result set for the targetted entity. (For example for a
* helicopter, a PS_MISSION_ABORT might be a logical addition to a class of
* the result sets).
*
* The integer referenced by the parameter "source" is a flag which is set
* to inform the caller whether the source of the function's result was from
* a valid PKH table or from a less authoritative source.
*
* The "FLAG" (*flg) parameter

* The "FLAG" (*flg) parameter is always set with
* one of the following values:
*
* Value
* of FLAG MEANING

*
* -1 unknown error.
*
* A generic pkh result is returned but is not authoritative.
*
* In this case calling the function rpt_perror() might shed
* some light on the source of the error. (This is an
* internal vlserver library procedure whose purpose is
* similar to perror())'.
*
* 0 Success.
*
* The pkh source for the referenced entity and threat
* munition (as defined in the DAMAGE_SOURCE_META_DATA_FILE)
* was successfully found, interpreted, and used in
* the calculation of the returned (VL_Result) value.
*
* 1 No Table.
*
* A generic pkh result is returned but is not authoritative.
*
* A reference to a vulnerability source could not be found
* in the DAMAGE_SOURCE_META_DATA_FILE for this
* combination of entity and threat.
*
*
* 2 Corrupt Table.
*
* A generic pkh result is returned but is not authoritative.
*

$Revision: 0.4 $ June 1998

VL(3) VL(3)

* The the referenced vulnerability source data was found,
* however there was an error when attempting to interpret
* the data.
*
* 3 No Environment Data.
*
* A generic pkh result is returned but is not authoritative.
*
* Data describing the fire and detonation events were
* never observed while monitoring the run time
* environment.
*
* 4 Unknown Target.
*
* A generic pkh result is returned but is not authoritative.
*
* A reference to the threatened (targeted) entity could
* not be found in the DIS_ENTITIES_FILE nor in the
* DIS_AUXILIARY_ENTITIES_FILE.
*
* 5 Unknown Threat.
*
* A generic pkh result is returned but is not authoritative.
*
* A reference to the threat munition could
* not be found in the DIS_ENTITIES_FILE nor in the
* DIS_AUXILIARY_ENTITIES_FILE.
*
*
* Note: This function depends on the DIS Network having been monitored by
* the Lethality server long enough to have detected the fire,
* detonation, and at least one Entity State PDU from both the target and
* firer. (Otherwise FLAG will not be set to "Success.").
*

* See also:
*
* VL_Result vl_mfk_ArlDIS_Result_NoNet(int*Flag, VLSetParam_t itype, ...)
* VL_Result vl_mfk_binaryDIS_Result_NoNet(int*Flag,VLSetParam_t itype, ...)
*

*/
VL_Result vl_mfkDIS_Result(int*flg, DisID *entityID, DisID *eventID)

/*
~ vl_mfkDIS_ProbAll()
*
* float* vl_mfkDIS_ProbAll(DisID *entityID, DisID *eventID)
*
* This function returns the a static array containing probabilities of
* certain kill levels. The indices of the array are as follows:

* Array Element (index)
* Element Value Value Meaning

PS_MFK_M Mobility Kill only.

$Revision:0.4$ June 1998

VL(3) VL(3)

* 1 PS_MFK_F Fire Power Kill only.
* 2 PS_MFK_MF Both Mobility and Fire Power Kills.
* 3 PS_MFK_K Catastrophic Power Kill
* 4 PS_MFK_NODAMAGE Probability that no additional
* damage occurs.
*
* The type DisID is a pointer to an array of 3 16-bit integers.
* "eventID" refers to the identification used to denote a
* fire/detonation event sequence in DIS (i.e. the "Event ID" field
* of a DIS Detonation PDU), while "entitylD refers to the
* identification used to denote an entity for a particular DIS
* exercise (i.e. the "entity identification" field of the Entity
* State PDU.
*
*
* DIAGNOSTICS:
*
* returns a static array containing additive probabilities of
* K,MF,F,M, and No Damage. The values in the array must
* be used be for subsequent calls to this function.
*
* returns. NULL on an error.
*
*
* These values are "additive" (sometimes referred to as
* a thermometer redistribution). They are added together in the
* following manner.
*
* p[PS_MFK_M] = Probability of Mobility Kill Only.
* p[PS_MFK_F] = Probability of Mobility Kill Only
* + Probability of Fire Power Kill only.
* p[PS_MFK_MF] = Probability of Mobility Kill Only
* + Probability of Fire Power Kill only
* + Both Mobility and Fire Power Kills.
* p[PS_MFK_K] = Probability of Mobility Kill Only
* + Probability of Fire Power Kill only
* + Probability of Both Mobility and Fire Power Kills
* + Probability of Catastrophic Power Kill.
* p[PS_MFK_NODAMAGE] =1.0
*
* That is these values are arranged so that they appear on [0,1] in order
* that one random number may select the event which occurs.
*
* e.g. if p(m only) = .10
* p(f only) = .10
* p(m & f) = .25
* p(k) = .25
* (and therefore) p(no damg)= 1.0 - (.1+.1+.25.+.25) = .30
*
* then a probability event space would be:
*
*
* | M | F | M & F | K [no dmg |

III I I I

$Revision: 0.4 $ June 1998

VL(3) VL(3)

+ + + —+ + + + + + + +
0..1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

resulting in the vector:

* p[PS_MFK_M] = p[0] = .10
* p[PS_MFK_F] = p[l] = .20
* p[PS_MFK_MF] = p[2] = .45
* p[PS_MFK_K] = p[3] = .70
* p[PS_MFK_NODAMAGE] = p[4] =1.00
*
* being returned by vl_mfk_ArlDIS_ProbAll_NoNet()
*

*/
float* vl_mfkDIS_ProbAll(DisID *entityID, DisID *eventID)

The following functions expect the same input as vl_mfkDIS_ProbA110 however, unlike
vl mfkDISJProbAIIO they each return only one probability and not all the probabilities of every event
occurring.

/*
*
* double _vl_mfkDIS_ProbK(DisID *entityID, DisID *eventID);
*
* Returns the probability of a K-KILL (catostrophic kill)
* and only a K-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfkDIS_ProbAll().
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an K-KILL and only a K-KILL.

V

/*
* double _vl_mfkDIS_ProbMF(DisID *entityID, DisID *eventID);

* Returns the probability of an MF-KILL (both mobility and firepower kill)
* and only an MF-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfkDIS_ProbAll().
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an MF-KILL and only an MF-KILL.
*

*/

/*
* double _vl_mfkDIS_ProbF(DisID *entityID, DisID *eventID);

$Revision: 0.4 $ June 1998

VL(3) VL(3)

* Returns the probability of an F-KILL (fire power kill)
* and only an F-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfkDIS_ProbAll().
*

* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an F-KILL and only an F-KILL.
*

V

/*
* double _vl_mfkDIS_ProbM(DisID *entityID, DisID *eventID);
*
* The parameters passed to this function are the same as passed to
* vl_mfkDIS_ProbAll().

* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an M-KILL and only an M-KILL.

*/

/*
* double _vl_mfkDIS_ProbNoDamage(DisID *entityID, DisID *eventID);
*
* Returns the probability of an M-KILL (mobility kill)
* and only an M-KILL.
*
* The parameters passed to this .function are the same as passed to
* vl_mfkDIS_ProbAll().
*

* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of NoDamage.
* /

/*- vl_mfk_ArlDIS. . . () functions */

/*
~ vl_mfk_ArlDIS_Result_NoNet()

* VL_Result vl_mfk_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, ...)
*
* This function returns an MFK kill type (i.e. one of Mobility, Fire
* Power, Mobility & Fire, Catastrophic Kills, or No Damage) as the result
* of the interaction of the target and threat.
*

* The answer may possibly be "made up" in the event
* that there is not enough information to find the correct
* answer. If this is the case, the parameter (fig) is set to
* a non-zero number. (See "The FLAG (*flg) parameter" below).

$Revision:0.4$ June 1998

VL(3) VL(3)

* The target, threat, and their environment are determined by the passed
* arguments. The VLSetParam_t data object (itype) identifies the
* required inputs needed to prepare a vulnerability assessment. (Namely
* it identifies the variables that are being passed, which are required
* to set the initial conditions of the vulnerability assessment.)
*
* In the event that itype — VL_PARAM_SET_METH_DIS_HitToKill
* It indicates that passing the DIS PDUS
* Entity State (target)
* Entity State (firer)
* FirePDU
* DetonationPDU
* shall be sufficient to set the VL parameters to return the
* correct result from the lookup table (or other data source).
*
* (pointers to these data structures will be passed to this routine (after
* itype):
*
*
* This function returns the result of the target/threat/detonation
* interaction
*
* RETURNS:
*
* The FLAG (*flg) parameter is always set. (See-below).
* The function will always return one of the following results:
*
* PS_MFK_M
* PS_MFK_F
* PS_MFK_MF
* PS_MFK_K
* PS_MFK_NODAMAGE
*
* PS_ERROR
*

* The naming convention for these results is as follows:
*
* #1_#2_#3
*
* #1 is "PS_" (meant to imply "Probability Space")
* #2 is used to indicate the analysis method being applied.
* (in this case the analysis method is to divide the probability
* space between the M,F,K kills (and combinations) as well as the
* implied No Damage possibility).
* #3 is used to indicate a particular event in that space.
*
* Hypothetically, there may be other results returned depending on what is
* defined as the result set for the targetted entity. (For example for a
* helicopter, a PS_MISSION_ABORT might be a logical addition to a class of
* the result sets).
*
* The integer referenced by the parameter "source" is a flag which is set
* to inform the caller whether the source of the function's result was from

$Revision: 0.4 $ June 1998

VL(3) VL(3)

* a valid PKH table or from a less authoritative source.
*
* The "FLAG" (*flg) parameter
*
* The "FLAG" (*flg) parameter is always set with
* one same values as it is set in the function vl_mfkDIS_Result().
*
* Note: This function depends on the DIS Network having been monitored by
* the Lethality server long enough to have detected the fire,
* detonation, and at least one Entity State PDU from both the target and
* firer. (Otherwise FLAG will not be set to "Success.").
*
* See also:
*
* VL_Result vl_mfkDIS_Result(int EntitylD, int DetID)
* VL_Result vl_mfk_binaryDIS_Result_NoNet(int*Flag,VLSetParam_t itype, ...)
*

*/
VL_Result vl_mfk_ArlDIS_Result_NoNet(int*flg, VLSetParam_t itype, ...)

/*
~ vl_mfk_ArlDIS_ProbAll_NoNet()
*
* float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...)
*
* This function returns the a static array containing probabilities of
* certain kill levels. The function's behaviour and return values
* are the same as the function vl_mfkDIS_ProbAll().
* The only difference is the parameter set passed to the function.
* This function expects the following parameters:
*
* The first parameter argument is of type VLSetParam_t.
*
* This type is used to indicate which data sources (inputs)
* are sufficient to set the VL parameters in order to be able
* to return the correct result from the lookup table
* (or other data source). These indicated data sources
* shall then be the 2nd, 3rd, 4th, ... etc. parameter arguments
* to the function.
*
* To date there are only two VLSetParam_t types defined:
*
* VL_PARAM_SET_METH_DIS_HitToKill
* VL_PARAM_SET_METH_DIS_ProxKill
*
* They both require the same arguments. Namely, pointers to
* the DIS PDUS:
*
* Entity State (for the target),
* Entity State (for the firer),
* Fire PDU,
* and Detonation PDU.
*
* These PDUs will be the 2nd, 3rd, 4th, and 5th arguments to the

SRevision: 0.4 $ June 1998 10

VL(3) , VL(3)

* function. These PDUs must be in the
* ARL DIS Manager PDU data structure format.
* (See vl_mfk_binaryDIS_ProbAll_NoNet() for passing other
* PDU data structures).
*

* RETURNS:

* Same as vl_mfkDIS_ProbAll().
*

* SEE ALSO:
* float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...)
* float* vl_mfkDIS_ProbAll(EntitylD, DetID)
*
* ***
* * *
* * NOTE: *
* * *
* * PDU arguments are in the form of a ARL DIS *
* * Manager PDU data structure format. *
* * *
* ***
*

V
float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...)

The following functions expect the same input as vI_mfk_ArlDIS_ProbA110 however, unlike
vl_mfk_ArlDIS_ProbAHO they each return only one probability and not all the probabilities of every
event occurring.

/*
~ _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, ...)
*
* double _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, ...)
*
* Returns the probability of a K-KILL (catostrophic kill)
* and only a K-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*

* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an K-KILL and only a K-KILL.
*

*/

/*
~ _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype,

SRevision: 0.4 $ June 1998 11

VL(3) VL(3)

* double _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, ...)
*
* Returns the probability of an MF-KILL (both mobility and firepower kill)
* and only an MF-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an MF-KILL and only an MF-KILL.
*

*/

/*
~ _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, ...)
*
* double _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, ...)
*
* Returns the probability of an F-KILL (fire power kill)
* and only an F-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).

* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an F-KILL and only an F-KILL.
*

*/

/*
~ _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, ...)
*
* double _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, ...)
*
* Returns the probability of an M-KILL (mobility kill)
* and only an M-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which

$Revision:0.4$ June 1998 12

VL(3) VL(3)

* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*

* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an M-KILL and only an M-KILL.

V

/*
~ _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ...)
*
* double _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ...)
*

* Returns the probability of No further Damage
* occuring and and only No further Damage occuring.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*

* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of NoDamage.
* /

/* - vl_mfk_binaryDIS. . . () functions */

/*
~ vl_mfk_binaryDlS_Result_NoNet()

* VL_Result vl_mfk_binaryDIS_Result_NoNet(VLSetParam_t itype, ...)
*
* This function returns an MFK kill type (i.e. one of Mobility, Fire
* Power, Mobility & Fire, Catastrophic Kills, or No Damage) as the result
* of the interaction of the target and threat.
*
* The target, threat, and their environment are determined by the passed
* arguments. The VLSetParam_t data object (itype) identifies the
* required inputs needed to prepare a vulnerability assessment. (Namely
* it identifies the variables that are being passed, which are required
* to set the initial conditions of the vulnerability assessment.)

* In the event that itype == VL_PARAM_SET_METH_DIS_HitToKill
* It indicates that passing the DIS PDÜS
* Entity State (target)
* Entity State (firer)
* FirePDU
* DetonationPDU
*

SRevision: 0.4 $ June 1998 13

VL(3) VL(3)

* shall be sufficient to set the VL parameters to return the
* correct result from the lookup table (or other data source).
*
* The passed arguments to the function are pointers to DIS PDU
* structures whose bits are packed into a continuous binary string
* of bytes. (That is, the arguments are pointers
* to the binary PDU string argument as it would "appear" as a DIS
* broadcast PDU on the DIS network).
*
* This function returns, the result of the target/threat/detonation
* interaction
*
* one of the following results are returned:
*
* PS_MFK_M
* PS_MFK_F
* PS_MFK_MF
* PS_MFK_K
* PS_MFK_NODAMAGE
*
* PS_ERROR
*
* The vl_library random number generator (vl_drandom()) is used to
* randomly select a point in the probability space (and hence return the
* "result".
*
* See also:
*
* VL_Result vl_mfkDIS_Result(int*flg, int EntitylD, int DetID)
* VL_Result vl_mfk_ArlDIS_Result_NoNet()
*
* ***
* * *
* * NOTE: *
* * *
* * PDU arguments are in the form of a continuous *
* * BINARY STRING. *
* * *
* ***
*

*/
VL_Result vl_mfk_binaryDIS_Result_NoNet(int*flg, VLSetParam_t itype,

/*
~ vl_mfk_binaryDIS_ProbAll_NoNet()
*
* float * vl_mfk_binaryDIS_ProbAll_NoNet(VLSetParam_t itype, ...)
*
* This function returns the a static array containing probabilities of
* certain kill levels. The function's behaviour and return values
* are the same as the function vl_mfkDIS_ProbAll().
* The only difference is the parameter set passed to the function.
* This function expects the following parameters:
*

$Revision: 0.4 $ June 1998 14

VL(3) VL(3)

* The first parameter argument is of type VLSetParam_t.
*
* This type is used to indicate which data sources (inputs)
* are sufficient to set the VL parameters in order to be able
* to return the correct result from the lookup table
* (or other data source). These indicated data sources
* shall then be the 2nd, 3rd, 4th, ... etc. parameter arguments
* to the function.
*
* To date there are only two VLSetParam_t types defined:
*
* VL_PARAM_SET_METH_DIS_HitToKill
* VL_PARAM_SET_METH_DIS_ProxKill
*
* They both require the same arguments. Namely, pointers to
* the DIS PDUS:
*
* Entity State (for the target),
* Entity State (for the firer),
* Fire PDÜ,
* and Detonation PDU.
*
* These PDüs will be the 2nd, 3rd, 4th, and 5th arguments to the
* function. These PDUs must be in "binary format" that is in
* the same bit format that DIS PDUs are trasported in when
* communicated on the DIS network. This means that each
* PDU argument points an address contains a continuous
* array of bits representing the content of the PDU.
*
* (See vl_mfk_ArlDIS_ProbAll_NoNet() for passing other
* PDU data structures).
*
* Example:
*
* assumes tgt_entity_state_pdu, shooter_entity_state_pdu,
* fire_pdu, detonation_pdu
* are pointers (void *)
*
* { float *probability_space;
*
* probability_space =
* vl_mfk_binaryDIS_ProbAll_NoNet(
* VL_PARAM_SET_METH_DIS_HitToKill
* , tgt_entity_state_pdu
* , shooter_entity_state_pdu ■
* , fire_pdu
* , detonation_pdu
*);
* }
*
* RETURNS:
*
* Same as vl_mfkDIS_ProbAll()

$Revision:0.4$ June 1998 15

VL(3) VL(3)

* SEE ALSO:
* float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...)
* float* vl_mfkDIS_ProbAll(EntityID, DetID)
*
* ***
* * *
* * NOTE: *
* * *
* * PDU arguments are in the form of a continuous *
* * BINARY STRING. *
* * *
* ***
*

V
float * vl_mfk_binaryDIS_ProbAll_NoNet(VLSetParam_t itype, ...)

The following functions expect the same input as vlmfkJbinaryDISJProbAHO however, unlike
vl_mfk_bmaryDIS_ProbAI10 they each return only one probability and not all the probabilities of every
event occurring.

/*
~ _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, ...)
*
* double _vl_mfk_ArlDIS_ProbK_NoNet(VLSetParam_t itype, ...)
*
* Returns the probability of a K-KILL (catostrophic kill)
* and only a K-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an K-KILL and only a K-KILL.
* ***
* * *
* * NOTE: *
* * *
* * PDU argurments are in the form of a continuous*
* * BINARY STRING. the argurment list consists of*
* * a pointer (to the PDÜ in binary form) followed*
* * by the length of the PDU string (in bytes) *
* * *
* * see: vl_mfk_binaryDIS_...() functions *
* * *
* ***
*
*/

SRevision: 0.4 $ June 1998 16

VL(3) VLO)

/*
~ _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, ...)
*
* double _vl_mfk_ArlDIS_ProbMF_NoNet(VLSetParam_t itype, ...)
*
* Returns the probability of an MF-KILL (both mobility and firepower kill)

* and only an MF-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*

* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an MF-KILL and only an MF-KILL.
*

*/

/*
~ _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, ...)
*
* double _vl_mfk_ArlDIS_ProbF_NoNet(VLSetParam_t itype, ...)
*
* Returns the probability of an F-KILL (fire power kill)
* and only an F-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*

* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an F-KILL and only an F-KILL.
*

*/

/*
~ _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, ...)

* double _vl_mfk_ArlDIS_ProbM_NoNet(VLSetParam_t itype, ...)
*
* Returns the probability of an M-KILL (mobility kill)
* and only an M-KILL.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()

$Revision: 0.4 $ June 1998 17

VL(3) VL(3)

* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerability
* analysis (and hence which variables will follow as arguments).
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of an M-KILL and only an M-KILL.

V

/*
~ _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ...)

* double _vl_mfk_ArlDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ...)
*
* Returns the probability of No further Damage
* occuring and and only No further Damage occuring.
*
* The parameters passed to this function are the same as passed to
* vl_mfk_ArlDIS_Result_NoNet()
* and vl_mfk_ArlDIS_ProbAll_NoNet()
*
* Namely an indentifier (itype) telling the server which
* parameters are needed to set the initail state of the vulnerabilty
* analysis (and hence which variables will follow as arguments).
*
* See Also:
* double _vl_mfk_binaryDIS_ProbNoDamage_NoNet(VLSetParam_t itype,
* double _vl_mfk_binaryDIS_ProbNoDamage_NoNet(VLSetParam_t itype, ..
* double _vl_mfkDIS_ProbNoDamage(EntitylD, DetID)
*
* RETURNS:
* a number LESS THAN 0 on an error,
* otherwise the probability of NoDamage.
*/

The remaining API calls are utility functions.

_vl_drandomO and _vl_drandom_seedO are used to generate pseudo random numbers. The random
number generater is used to select returned results for the "Result" functions (vl_mfkDIS_ResuItO,
vl_mfk_ArlDIS_Result_NoNetO, and vl_mfk_binaryDIS_Result_NoNetO). The function vl_GetRe-
suTtErrorValueO may be used to debug at an application level when unexected results are returned.
vl_mfk_directFireIsAHitO applies specifically to "direct fire" munitions to see if they hit the target in
question. The server uses this function to possibly overide the look-up table results. For example if a bullet
lands within a lethal radious of a target, however, the target is oriented in such a manner that the bullet actu-
ally missed. (And hence, vl_mfk_directFireIsAHitO returns a FALSE result. Then the server will overide
the look-up table's damage result and return a "No Damage" result instead. Assuming, of course, that a hit
is required to cause damage. vl_mfk_directFireIsAHitO does no geometric calculations but rather it is
reliant on the "detonation result" field of the deonation PDU to determine if a bullet misses of hits a target.
VL_mfkDIS_ResultGenericRandomDrawO is used to return (an invalid) result in the event that look-up
tables or valid data cannot be accessed for some reason.

SRevision: 0.4 $ June 1998 18

VL(3) VL(3)

/* vl_. . . () Utility functions */

/*
~ _vl_drandom()
*
* double _vl_drandom(void)
*
* returns a random number on [0,1]
*
* See also: _vl_drandom_seed()
* (to re-seed pseudo random sequence).
*

V
double _vl_drandom(void)

/*
~ _vl_drandom_seed()
*
* void _vl_drandom_seed(int seed)
*
* re-seeds the pseudo random number sequence using the integer "seed"
* (Don't use a seed of 0).
* See also:
* _vl_drandom()
V

void _vl_drandom_seed(int seed)

/*
~ vl_GetResultErrorValue();
*
* int vl_GetResultErrorValue(void);
*
* Called only (and immediately) after an unsuccessful attempt
* has been made to one of the
* "float *vl_mfk_SOMETHING_ProbAll(...)" functions
*
* (e.g. calling any one of:
* float * vl_mfkDIS_ProbAll(DisID *entityID, DisID *eventID);
* float * vl_mfk_ArlDIS_ProbAll_NoNet(VLSetParam_t itype, ...)
* float * vl_mfk_binaryDIS_ProbAll_NoNet(VLSetParam_t itype, ...;
* have returned a NULL
*
* RETURNS an error value (as follows:
*
* VL_RSLT_ERR_GENERAL /* Unknown error. */
* VL_RSLT_SUCCESS /* success - NO error. */
* VL_RSLT_ERR_NO_TABLE /* No Table. */
* VL_RSLT_ERR_CURRUPT_TABLE /* Corrupt Table. */
* VL_RSLT_ERR_NO_ENVIRON_DATA /* No Environment Data. */
* VL_RSLT_ERR_UNKNOWN_TARGET /* Unknown Target. */
* VL_RSLT_ERR_UNKNOWN_THREAT /* Unknown Threat. */
*

V
int vl_GetResultErrorValue(void)

$Revision:0.4$ June 1998 19

VL(3) VL(3)

/*
~ vl_mfk_directFireIsAHit()
*
* int vl_mfk_directFireIsAHit(DetonationResult DIS_det_result)
*
* This function returns TRUE if the result field indicates a
* "hit" with a direct fire (or prox-fuze) weapon.
*
* The argument DIS_det_result is the IEEE 1278.1 (DIS) Detonation
* Result field (An 8 bit unsigned integer)
* [the type DetonationResult is defined in the ARL DIS Manager
* "pdu_basic.h"].
*
* Note: for a kinetic energy munitions
* (That is type VL_Meth = "DIS HitToKill"
* in the DAMAGE_SOURCE_META_DATA_FILE).
* only:
* 1 Entity Impact
* 2 Entity Proximate Detonation
* 5 Detonation
*
* will currently have an effect on
* the targetted entity.
*

*/
int vl_mfk_directFireIsAHit(DetonationResult DIS_det_result)

/*
~ VL_mfkDIS_ResultGenericRandomDraw()
*
* VL_Result VL_mfkDIS_ResultGenericRandomDraw(void)
*
* A generic probabilility of a kill given a hit
* result is returned (but is not authoratative).
* Results are drawn from a fixed distribution.
*
* This is used as the default answer when a target or threat
* is unknown, or else if the V/L data set cannot be found or
* can be found but cannot be interpreted correctly.
*
* RETURNS
*
* An "MFK" probability result (as described
* in vl_mfkDlS_Result()). I.E. one of the
* following values are returned
*
* PS_MFK_M
* PS_MFK_F
* PS_MFK_MF
* PS_MFK_K
* PS_MFK_NODAMAGE
V

VL_Result VL_mfkDIS_ResultGenericRandomDraw(void)

$Revision:0.4$ June 1998 20

VL(3) VL(3)

SEE ALSO
Other DIS Lethality server components:

vlparam(3) db(3)

AUTHOR
Geoff Sauerborn <geoffs@arl.mil> , US Army Research Lab. 1997,1998.

SRevision: 0.4 $ June 1998 21

VLParam(3) VLParam(3)

NAME
vlp_setp_all_Munition_Frm_DIS, vlp_zero_all_params, vlp_print_all_params

VLP_ang_aspect, VLP_ang_attack ,VLP_tvel[3], VLP_impact[3], VLP_range, VLP_result, VLP_tar-
get_id, VLP_target_type, VLP_firer_id, VLP_firer_type, VLP_threat_id, VLP_threat_type

SYNOPSIS
#include <vlparam.h>

extern Float32 VLP_ang_aspect, VLP_ang_attack ,VLP_tvel[3], VLP_impact[3];
extern Float64 VLP_range;
extern int VLP_result;
extern EntitylD VLP_target_id;
extern Entityiype VLP_target_type;
extern EntitylD VLP_firer_id;
extern Entityiype VLP_firer_type;
extern EntitylD VLP_threat_id;
extern EntityType VLP_threat_type;

int vlp_setp_all_Munition_Frm_DIS(PDU*, PDU*, PDU*, PDU*);/* Arl DIS Manager */
void vlp_zero_all_params(void); /* initialize parameters */
void vlp_print_all_params(void); /* Display settings of all VL parameters */

DESCRIPTION
The Vulnerabilty Parameter sub-layer of the DIS lethality server. This layer is the means by which vul-
nerability data look-up functions determine the initial conditions for the vulnerability calculation.

The VLParam layer serves to insolate the V/L result data from the virtual environment (initial conditions
to the vulnerability analysis). (This separation allows different DIS networking packages to be swapped in
an out of the server, and even allowing for a non-DIS networking paradigm, such as HLA, to be used).

When a new look-up function is written for data of a certain format, the author of the look-up function will
have to reference this layer. The variables denned here are the only means by which the initial conditions
relevant to the V/L calculation may be determined.

If there are crucial parameters missing from this layer, then those parameters will have to be added. Fol-
lowing this, API functions which set these parameters (prior to calling the look-up function) need to be
modified or added to the VLParam(3) API layer of the lethality server. As an example the source code for
the API function vlp_setp_all_Munition_Frm_DISO may be examined. The function vlp_setp_all_Muni-
tion_Frm_DISO sets the VLparam l°yer parameters based on inputs provided by Entity State, Fire, and
Detonation PDUs. Finally, the reader (result look-up function) will have to be modified (or written) that
can access the newly added parameters in order to look-up the proper results from the lethality data set.

Data Dictionary:

Note: "target" refers to the queried entity who's resulting vulnerability is being asked for of the server.
EntitylD - is the DIS Entity ID record (site, application, entity)

IEEE 1278.1

float32 - 32bit floating point number.
float64 - 64bit floating point number,
enum - a unitless enumerated value.

$Revision:1.3$ June 1998

VLParam(3) VLParam(3)

Entity Coordinate system:

(Entity's coordinate system used in IEEE 1278.1
Note that "up" is -Z

I'top'
I
I

../_/\.. entity
/ l_l === 'front'

I 1 I >
l_/ 1/ X
/ I
/ I

/ I
/ I

/ v
/ +z

/
/

1/

PARAMETER TYPE UNITS MEANING

VLP_ang_aspect float32 radians 'horizontal' orientation of munition's
directional attack (aspect angle)
(relative to the target entity).
(Rotation is about the target entity's
positive "z" axis in a clockwise
direction). The positive direction of
rotation about an axis is defined as
clockwise when viewed towards the
positive direction along the axis of
rotation.

Clockwise direction: For example, a 90
degree (PI/2 radian) clockwise rotation
about the z axis will make the positive
x-axis co-linear to where the positive
y-axis was before the rotation.

Targetted entity's coordinate system is
that of IEEE 1278.1 with the positive
X-Axis axis extending from the "front"
of the entity. Positive Z-Axis
extending "down". Positive Y-Axis
extending out of the entity's "right".

See Also: VLP_ang_attck.

$Revision: 1.3 $ June 1998

VLParam(3) VLParam(3)

VLP_ang_attck float32 radians "Angle of attack". 'vertical' orientation
of munition's directional attack (aspect
angle) (relative to the target).
(Rotation is about the target entity's
new "X" axis after having been rotated
by the angle VLP_ang_aspect.

See Also: VLP_ang_aspect.

VLP_impact[3] float3 2 meters Location of munition impact point
relative to the target. Location is in
target entity's coordinate system. (IEEE
1278.1)

VLP_tvel[3] float32 m/s Terminal velocity of the munition
immediately before impact. This is in
the DIS world coordinate system linear
velocity vector record 1278.1 Units
are in meters per second.
(Same as the "velocity" field of the
DIS Detonation PDU).

VLP_range float64 meters (line of sight) range from the target to
the origin of the munition, (i.e.
distance from where the munition was
fired to where it detonated).

The DIS Standard states that the "range"
field in the Fire PDU is set to 0 if the
range is unknown. If this is the case,
then the VL server shall attempt to
guess at the approximate range by
setting the VLP_range to the distance
between the target and firing entity (if
known). If this approximation fails for
some reason, then VLP_Range shall remain
set to 0.

VLP_result int enum result of the detonation (if known)
the enumeration are according to the
DIS standard (IEEE 1278.1)

Note: for a kinetic energy munitions
(That is type VL_Meth = "DIS HitToKill"
in the DAMAGE_SOURCE_META_DATA_FILE).
only:

1 Entity Impact
2 Entity Proximate Detonation
5 Detonation

will currently have an effect on
the targetted entity.

$Revision: 1.3 $ June 1998

VLParam(3) VLParam(3)

Value Description
0 Other
1 Entity Impact
2 Entity Proximate Detonation
3 Ground Impact
4 Ground Proximate Detonation
5 Detonation
6 None
7 HE hit, small
8 HE hit, medium
9 HE hit, large
10 Armor-piercing hit
11 Dirt blast, small
12 Dirt blast, medium
13 Dirt blast, large
14 Water blast, small
15 Water blast, medium
16 Water blast, large
17 Air hit
18 Building hit, small
19 Building hit, medium
20 Building hit, large
21 Mine-clearing line charge
22 Environment object impact
23 Environment object proximate detonation
24 Water Impact
25 Air Burst

VLP_target_id EntitylD enum Targeted Entity's ID. (site, host, id)
If there was an entity impact
indicated by the= VLP_result field,
then this is the entity which was
impacted.

VLP_target_type EntityType enum Type of entity Targeted. (Entity Enumeration)
If there was an entity impact
indicated by the= VLP_result field,
then this is the type of entity which
was impacted (e.g. "T72M1", "M48").

VLP_threat_id EntitylD enum Threat Entity's ID. (site, host, id)
If the treating object (impacting or
detonating object) is an entity,
then this is its Entity's ID. (site, host, id)
(Normally the threat is not an entity,
but an inanimate munition, in which case
the VLPthreatid

VLP_threat_type EntityType enum Type of threating object. (Entity Enumeration)
(Normally the threat is a munition
in which case this field will be derived
from the DIS Burst descriptor field of
the detonation and fire PDUs).

SRevision: 1.3 $ June 1998

VLParam(3) VLParam(3)

VLP_firer_id EntitylD enum If the originating entity (the shooter)
can be determined, then this is its
entity ID.

VLP_firer_type EntityType enum If the originating entity (the shooter)
can be determined, then this field
identifies the DIS entity type.

The vulnerability table reader function must derive all of it's required environmental information from these
data structures. If it requires additional environmental data, then the lethality server code will have to be
modified to provide that data.

Synopsis of the API functions are now given in the following order:

vlp_setp_all_Mumtion_Frm_DIS()
vlp_zero_all_params()
vlp_print_all_params()

/*
~ vlp_setp_all_Munition_Frm_DIS()
*
* int vlp_setp_all_Munition_Frm_DIS(PDU *es_tgt,
* PDÜ *es_firer, PDU *pfire, PDU *pdet)
*
* Map all DIS data (from the pdu's) to their appropriate parameter.
* *NOTE* Assumes PDUs are pointers to ARL DIS Manager PDU structures.
*
* This function uses the data found in the Target and Firer's
* Entity State, the Fire, and the Detonation Protocol Data Units (PDUs)
* to set the appropriate VLparam layer parameters.
*
* Returns 0 on an error.
*

V

/*
~ vlp_zero_all_params()
*
* void vlp_zero_all_params(void)
*
* initialize all parameters.
* sets to zero all parameters in the VLP layer.
*

*/

/*
~ vlp_print_all_params()
*
* void vlp_print_all_params(void)
*
* Display settings of all VL parameters values.
* These values are used by table lookup functions to parse
* their individual vulnerability tables. See definitions for all
* the named variable in the DIS Lethality server's data dictionary.

$Revision: 1.3 $ June 1998

VLParam(3) VLParam(3)

BUGS

*
*
*
*
*

V

See Also:
vlp_zero_all_params();
_vlp_setp_....functions();

The global variables should be hidden. APIs should be written instead to set and get parameter values, (e.g.
_vlp_setp_target_id(), _vlp_getp_target_id()). Most of these have already been written, but since they the
set was incomplete, the naked global variables are left exposed for now. (Another reason for leaving them
exposed for now is that access time is slightly faster when not having to go through the overhead of calling
an extra function layer).

SEE ALSO
Other DIS Lethality server components:

vl(3) db(3)

AUTHOR
Geoff Sauerborn <geoffs@arl.mil> , US Army Research Lab. 1997,1998.

$Revision: 1.3$ June 1998

VLS_DB_INIT(5) VLS_DB_INIT(5)

NAME
dis_mon

DESCRIPTION
vls_db_initini (This is the same initialization file needed by the data manager (db) API layer of the DIS
Lethality server. This is an ISO 646,7 bit (ASCII) file. Lines whose first non-white spaces character is the
"#" symbol are ignored. The file consists of name-value pairs which define the file names to be read in
order to initialize certain data structures used by the DIS Lethality server's data manager (db) API layer.
File names specified in vls_db_initini are assumed to be found relative to the $VLS_HOME/Data/Init/
directory. VLS_HOME is an environmental variable which must be set to the root (home) directory of the
DIS Lethality server. If not set, then the value of $VLS_HOME is taken as the current working directory

("•/")•

An example vls_db_init.ini initialization file follows:

$Id: vls_db_init.5,v 0.5 1999/01/21 21:27:50 geoffs Exp geoffs $

This file is input to db_init() routine.
e.g. if this file was called ". Zvls_db_init.ini",

then calling the API db_init():

db_init("Vvls_db_init.ini");

would initialize the database.

syntax:

DIS_ENTITIES_FILE - the file containing all DIS Entity ID'S
file's format in is comma separated fields.

(there are 15 fields. The last field is the
record number, the first 14 fields comprise
the 7 DIS "Entity Type" enumerations. These are

ordered in pairs of enumeration integer,
followed by ascii text enumeration description.

DIS_AUXILIARY_ENTITIES_FILE - user added (or non-standard dis entity ID's.

DAMAGE_SOURCE_META_DATA_FILE - contains pointers to where lookup
tables can be found.

DIS_ENTITIES_FILE ./dis2_0_4_ids.csf

DIS_AUXILIARY_ENTITIES_FILE ./dis_entities_aux.csf
DAMAGE_SOURCE_META_DATA_FILE ./tst_tbls_HEAT.csf

Identifiers for the name-value pairs are as follows:

DISJEN 111 lESJFTLE The file name which follows this keyword identifies the file containing all DIS
Entity Enumerations. Currently the entity enumeration file format in is comma separated fields. One
record appears per line. There are 15 fields per record. The last field is the record number, the first 14
fields comprise the 7 DIS 'Entity Type" enumeration fields. These are ordered in pairs of enumeration inte-
ger, followed by ASCII text enumeration description. The enumeration integers correspond to the value for
the 7 DIS 'Entity Type" enumeration fields (Kind, Domain, etc.) as see in the table below.

SRevision: 0.5 $ March 1998

VLS_DB_JNIT(5) VLS_DBJNTT(5)

DIS "Entity Type " Enumeration

Field Name Bit Length

Kind
Domain
Country
Category
Subcategory
Specific
Extra

8
8

16
8
8
8
8

The field mat follows each enumeration containts a brief quoted text string to name to that enumeration
value. Enumeration values and their names placed in the DISJENTITIESJBILE file should only be enu-
merations found in the DIS enumeration standard (see: http://siso.sc.ist.ucf.edu/dis/dis-dd/). The
DIS_AUXILIARY_ENTmES_FILE file can be used to add non-standard and experimental enumera-

tions.

A (very) short excerpt of an example DIS_ENTITIES_FILE file follows:

DIS 2.0.4 Enumerations (1995)

ft contained in the IEEE 1278.1-1995 Standard for DIS

Derived from the DIS Data Dictionary.

1,"Platform",1.00,"Land",225,"United States", 1.00, "Tank", 1.00, " Ml AbramsM.00, "Ml Abrams",1.00,"VERSION 5",1

1, "Platform", 1.00, "Land", 225, "United States" ,1.00, "Tank",2.00, " M60 Main Battle Tank (MBT)M.OO," M60A3",1.00, "",2

1, "Platform",1.00, "Land",225, "United States" ,1.00, "Tank",4.00," M48 medium tank",1.00," M48CM.00, ,3

1,"Platform",1.00,"Land",225,"United States",1.00,"Tank",4.00," M48 medium tank",2.00," M48A1",1.00,"",4

DIS AUXILIARY_ENTniES_FILE Identifies the file to be used for adding any additional (auxiliary)
DIS Enumerations. Sometimes it is handy for adding exercise specific entities or entities not in the latest
release of the DIS enumeration standard. The DIS_AUXILIARY_ENTrriES_FILE file follows the same
format as the DIS_ENTITIES_FILE file.

DAMAGE SOURCE_META_DATA_FILE This denotes the file which contains references to lethality
data sources. This tells the the data manager where to find look-up tables associated with different tar-
get/threat combinations. The data format found in this file is currently a comma-separated field list. There
are five fields which identify the following items.

The threatened entity (in DIS standard enumeration).
The threat (in DIS standard enumeration).
The type of V/L analysis method to be used (i.e. MFK direct or indirect fire).
The table format identifier.
The table's location (in URL format).

The V/L analysis method must be a "quoted" string as identified in the array VL_Meth_List[] (source code
$VLS_HOME/src/Db/vl_meth.h). A short excerpt from a DAMAGE_SOURCE_META_DATA_FILE
follows:

DIS enumerations are IEEE 1278.1-1995 Standard.
Note that the file URL location is taken relative

to the $VLS_HOME directory.
#--next line's tgt and threat are: Soviet 125mm KE Threat VS. a T-80 target.
1 1 222 1 1 1, 2 2 222 2 11,"DIS HitToKill","IUA_KE","file:/Data/Tables/IUA/smplKE.iua"

SRevision: 0.5 $ March 1998

VLS_DB_INIT(5) VLS_DB_INIT(5)

#--next line's tgt and threat are: Soviet 120mm HEAT-FS VS. a T-80 tgt.
1 1 222 111, 2 2 222 2 18,"DIS HitToKill","IUA_HEAT","file:/Data/Tables/IUA/smpl

#--next line's tgt and threat are: AT-5 Spandrel missile VS. a T-80 tgt.
1 1 222 111, 2 2 222 1 7,"DIS HitToKill","IUA_HEAT","file:/Data/Tables/IUA/smpl

Note that High Explosive Anti-Tank (HEAT) munitions are designated as using the "DIS HitToKill" vulner-
ability methodology. This means they have to actually hit the target in order for the server to look-up
lethality effects in the look-up tables. This is due to the type of vulnerability data that is being used (in the
look-up table). The vulnerability data that is being used are treated as "probability of a kill" (at some level)
given a hit on the target. If therefore the munition actually missed the target, it would not make sense to
used the data in this look-up table to describe the results of the event. (Even if it was only a near miss that
detonated right next to the target). The designation "DIS ProxKiU" could be used if the data set was one
which did not require a "Hit" directly on the target.

FILES
$VLS_HOME/Data/Init/vls_db_init.ini

SEE ALSO
Other DIS Lethality server components:

dis_mon(l), db(3), vl(3) and $VXS_HOME/src/Db/vl_meth.c within the vl(3) API in particular.

Author
Geoff Sauerbom <geoffs@arl.mil> , US Army Research Lab. 1997,1998.

SRevision: 0.5 $ March 1998

VLSCLffiNT(3) VLSCLffiNT(3)

NAME
vls_open, vls_close, vls_send, vls_read

SYNOPSIS
#include "vlservenh"

int vls_open(char *host);
int vls_close(void);
int vls_send(char *data);
int vls_read(char **ptr);

DESCRIPTION
vlserver client library functions. V/L server client applications must call these functions to communicate
with a running DIS V/L Communications Server.

/*
~ vls_open()
*
* int vls_open(char *host)
*
* This API is used by client programs to open a connection
* to the DIS V/L server. The argument "host" is an
* ASCII null terminated string that is the name (or IP address)
* of the computer which is running the V/L server.
*
* REQUIRES:
* The DIS vlserver program to already be running on the "host"
* computer.
*
* RETURNS
*
* TRUE (1) if connection is successful.
* FALSE (0) if connection was unsuccessful.
*
* SEE ALSO: /etc/hosts
*/

int vls_open(char *host);

/*
~ vls_close()
*
* int vls_close(void)
*
* This API used by client programs to
* terminate connection with V/L server.
*
* RETURNS
*
* TRUE (1) - (* on a success close. *)
* VL_BAD_NETCONN - (* if there never was a connection to begin with *)
*

V
int vls_close(void);

/*

$Revision: 0.3 $ June 1998

VLSCLffiNT(3) VLSCLffiNT(3)

~ vls_send()
*
* int vls_send(char *data)
*
* This routine takes a data msg received from a client
* and sends it the the VL server. It is up to the client
* to make sure that the message is a legal message to the
* server. The message a null terminated ASCII string.
*
* For the proper syntax of see the manual page: vlserver(l)
*
* RETURNS 1 - on success
* VL_BAD_NETCONN - if there is not a connection established.
* less than zero - on failure.
*

V
int vls_send(char *data);

/*
~ vls_read()
*
* int vls_read(char **ptr)
*
* This function checks to see if the VL Server has sent data
* back to the client. (usually because the client has posed
* a query to the server). If a message has been sent, then
* the message type that was sent from the VL Server will be
* the returned value of the function (this identifies the
* message type).
*
* In addition to the message type, the message itself is passed
* to the client by setting the the argument "ptr" to point to
* some data message. (However, not all message types will pass
* message and set the "ptr" argument.) If a message is
* passed, then it is an ASCII (NULL terminated) string. This
* string is allocated memory and it is the responsibility
* of the calling application to free it (via free()) when
* no longer need. The interpretation of the string message
* depends on the message type value returned.
*
* Client vulnerability queries are usually answered by a
* VL_MSG_TO_CLIENT message type. (unless an exception
* occurred). An improperly formatted query returns
* VL_BAD_QUERY. If the VL server stopped running for some
* reason VL_SERVER_SHUTDOWN is returned. If the client sends
* too many quarries before looking for an answer, (or if too
* many clients are queuing faster than the server can respond,
* it is possible for the server to end up dropping queries and
* returning a VL_MSG_OVERFLOW message type. If the client
* failed to call vls_open() prior to forming a query to the
* server, then a VL_BAD_NETCONN message type is returned. If
* the client application mis-formatted a query, then the a
* VL_BAD_QUERY message type is returned. How a proper query
* is formated is explain in the vlserver(l) manual page.

$Revision: 0.3 $ June 1998

VLSCLIENT(3) VLSCLffiNT(3)

*
* RETURNS
*

* The function returns a message type and may set the
* argument "ptr" to point to a text message. Values
* (message types) returned are one of the following values:
*
* Message Type Meaning
*
* VL_NO_DATA (* no message (yet?) ...keep trying... *)
* VL_MSG_TO_CLIENT (* incoming MSG from server *)
* VL_SERVER_SHUTDOWN (* server shutting down *)
* VL_MSG_OVERFLOW (* too many queries in server's que *)
* VL_BAD_QUERY (* couldn't format or understand query *)
* VL_BAD_NETCONN (* Never connected - call vls_open() 1st. *)
*

* NOTE: The returned message point to by "ptr"
* is allocated memory and it is the responsibility
* of the calling application to free it (via free()) when
* no longer need.
*
* SEE ALSO:
*
* vlserver(l)
*

*/
int vls_read(char **ptr);

EXAMPLE CODE EXCERPT
The code except would be linked with the libvlsclient.a library (via a compile option such as "-lvlsclient".
(i.e. cc example.c -lvlsclient").

#include "vlserver.h"

int status, query_id;
char *srv_msg; /* will point to message return by server */

/* code excerpt... */
vls_send("l echo hello world");
while (VL_NO_DATA = (status=vls_read(&srv_msg)))

; /* null loop waiting for server to respond */
/* got a message back! */
puts(srv_msg);
free(srv_msg);

/* send another message: */
vls_send("2 QUERY TYPE_mfkDIS_Result ARGS_mfkDIS_IDS 1185 33086 1110 1185 33086 12");
while (VL_NO_DATA — (status=vls_read(&srv_msg)))

; /* null loop waiting for server to respond */
/* got a message back */
if (status = VL_MSG_TO_CLffiNT) {

query_id ■= atoi(srv_msg);
if (query_id — 2) {/* 2 is the ED we sent with our 2nd call to vls_send() */

puts("Got back an answer to our query!");
printf("Answer is: %s0,srv_msg);

$Revision: 0.3 $ June 1998

VLSCLffiNT(3) VLSCLIENT(3)

}
}
free(srv_msg);

SEE ALSO
Other DIS Lethality server components:

vlserver(l), vlexample_client.c - an undocumented example client program provided with the DIS Lethal-
ity server (look in $VLS_HOME/src/Server).

Author
Geoff Sauerbom <geoffs@arl.mil> , US Army Research Lab. 1997,1998.

$Revision: 0.3 $ June 1998

VLSERVER(l) VLSERVER(l)

NAME
vlserver

SYNOPSIS
vlserver [-P port#] [-V]

DESCRIPTION
vlserver (The DIS Vulnerability/Lethality Server front end) is a part of the a collective set of programs and
APIs known as the DIS Lethality server. This application is a TCP/IP server for clients to the DIS Lethality
server. It works in conjunction with disjnon (the DIS Damage Monitor). In fact vlserver does very little
processing itself, it merely passes client queries on to the DIS Damage Monitor and returns the results.
vlserver must be started before dis_mon since vlserver both creates the shared memory link between the
two processes and communicates the location of that link to dis_mon.

OPTIONS
-P port# Where port# Is the port socket number where V/L server clients shall connect to the server.
(Default is port 4976).

-V Turn on verbose mode. Gives extra information printed to the local console.

PROTOCOL
client/server protocol is a very simple set of ASCII commands, queries, and responses.

All commands sent to the server by a client are preceded by an integer serial number (e.g. "3 ECHO hello
world"). The serial number has no significance to the server (other than it is required for proper syntax).
This same serial number is returned to client along with the server's reply for that particular command. The
following are recognized commands a client may send to the server

ECHO <string> Where <string> is any text. The server returns <string> to client.

SHM3D The server returns the shared memory ID to client (see shmget(3), shmctl(3)).

VERSION The server returns server/client protocol version ID. This an identification associated
with a set of recognized commands a client may send to the server. (The client-server synatx lan-
guage version). VER Is a synonym for VERSION.

QUERY <QTYPE> <ARG_TYPES> [arguments...]

This is the main query mechanism. The server returns an answer to a vulnerability query. The
format of the answer is specified by QTYPE where QTYPE is one the valid type specifiers (see
QTYPE). ARGJTYPES tells the server what kind of arguments will follow.

<QTYPE> specifies the form in which the query answer is to appear. Valid query types
are:

TYPE_mfkDIS_Result
TYPE_mfkDIS_ProbAll
TYPE_mfkDIS_ProbK
TYPE_mfkDIS_ProbMF
TYPE_mfkDIS_ProbF
TYPE_mfkDIS_ProbM
TYPE_mfkDIS_ProbNoDamage

<ARGJYPES> tells the server what kind of arguments will follow. Currently the only
valid argument type is:

ARGS mfkDIS IDS

$Revision: 0.3 $ Feb 1998

VLSERVER(l) VLSERVER(l)

ARGSmflcDISJDS tells the server to expect ID arguments. (These IDs will specify the
DIS Entity ID and DIS Detonation Event ID relevant to the query. That is the arguments
shall be the DIS Identity of the threatened Entity followed by the DIS Identity of the Det-
onation event which poses a threat to the Entity.

Since DIS expresses these identities in the form of a set of triple integers (for: site, appli-
cation, id), then the arguments shall appear as six integers. (Two sets of triplets, one set
for the threatened (target ID) followed by another set for the Detonation event ID:

tgt_site tgt_app tgt_id event_site event_app event_id

An example query syntax:

123 QUERY TYPE_mfkDIS_Result ARGS_mfkDIS_IDS 1185 33086 1110 1185 33086 12

This query asks the server to supply an "MFK" type result for the entity 1185 33086 12 as a consequence of
detonation event 1185 33086 1110. The server might respond with something like:

123: 4 0

"123:" matches the query ID that was passed to the server. "4 and 0" are the RESULT and FLAG codes
respectively. The following tables describe RESULT and FLAG codes for TYPE_mfkDIS_Result type
results:

RESULT
Numeric Enumerated Meaning

code equivalent

0 PS_MFK_M Mobility Kill
1 PS_MFK_F Fire Power Kill
2 PS_MFK_MF Mobility and Fire Power Kill
3 PS_MFK_K Catastrophic Kill
4 PS_MFK_NODAMAGE No Additional Damage
5 PS_ERROR unknown error

The FLAG returned may have the following values and meanings associated with them:

$Revision: 0.3 $ Feb 1998

VLSERVER(l) VLSERVER(l)

Value
FLAG return codes

Meaning

Unknown error.

A generic pkh result is returned but is not authoritative.

In this case calling the function rpt_perror() might shed
some light on the source of the error. (This is an
internal vlserver library procedure whose purpose is
similar to perror()).

Success.

The pkh source for the referenced entity and threat
munition (as denned in the DAMAGE_SOURCE_META_DATA_FILE)
was successfully found, interpreted, and used in
the calculation of the returned (VL_Result) value.

No Table.

A generic pkh result is returned but is not authoritative.

A reference to a vulnerability source could not be found
in the DAMAGE_SOURCE_META_DATA_FILE for mis
combination of entity and threat.
Corrupt Table.

A generic pkh result is returned but is not authoritative.

The the referenced vulnerability source data was found,
however there was an error when attempting to interpret
the data.
No Environment Data.

A generic pkh result is returned but is not authoritative.

Data describing the fire and detonation events were
never observed while monitoring the run time
environment.

$Revision: 0.3 $ Feb 1998

VLSERVER(l) VLSERVER(l)

Value
FLAG return codes

Meaning
Unknown Target.

A generic pkh result is returned but is not authoritative.

A reference to the threatened (targeted) entity could
not be found in the DIS_ENTITIES_FILE nor in the
DIS_AUXILIARY_ENTITffiS_FrLE.
Unknown Threat.

A generic pkh result is returned but is not authoritative.

A reference to the threat munition could
not be found in the DIS_ENTmES_FILE nor in the
DIS_AUmiARY_ENTmES_FILE. (See vls_db_init(5)).

More example client commands and server responses:

client's command server's response
1 ECHO Hello World 1: Hello World
2 VER 2: 19970930
3 FOO BAR 3: VLS_QUERY_SYNTAX_ERROR

BUGS
"Surely you aren't serious." 'Yes I am....and don't call me Shirley."

SEE ALSO
Other DIS Lethality server components:

dis_mgr(l), vlsclient(3), vls_db_init(5) vlexample_clientexe vlexample_client.exe is an undocumented
example client program provided with the DIS Lethality server (look in $VLS_HOME/bin).

Author
Geoff Sauerborn <geoffs@arl.mil> , US Army Research Lab. 1997,1998.

$Revision: 0.3 $ Feb 1998

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER
ATTN DTIC OCP
8725 JOHN J KINGMAN RD STE 0944
FTBELVOIR VA 22060-6218

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLCSALTA REC MGMT
2800 POWDER MILL RD
ADELPHIMD 20783-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLCILL TECH LIB
2800 POWDER MILL RD
ADELPHIMD 207830-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLD R WHALIN
2800 POWDER MILL RD
ADELPHIMD 20783-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLDD J J ROCCHIO
2800 POWDER MILL RD
ADELPHIMD 20783-1197

DOD JOINT CHIEFS OF STAFF
ATTN J39 CAPABILITIES DIV

CAPT J M BROWNELL
THE PENTAGON RM 2C865
WASHINGTON DC 20301

OFC OF THE DIR RSRCH AND ENGRG
ATTN R MENZ
PENTAGON RM3E1089
WASHINGTON DC 20301-3080

OFC OF THE SECY OF DEFNS
ATTN ODDRE (R&AT) G SINGLEY

ODDRE (R&AT) S GONTAREK
THE PENTAGON
WASHINGTON DC 20301-3080

OSD
ATTN OUSD(A&T)/ODDDR&E(R)
ATTN RJTREW
WASHINGTON DC 20301-7100

1 AMCOM MRDEC
ATTNAMSMIRD W C MCCORKLE
REDSTONE ARSENAL AL 35898-5240

1 CECOM
ATTN PM GPS COL S YOUNG
FT MONMOUTH NJ 07703

1 CECOM
SP & TERRESTRIAL COMMCTN DIV
ATTN AMSEL RD ST MC M H SOICHER
FT MONMOUTH NJ 07703-5203

1 US ARMY INFO SYS ENGRG CMND
ATTNASQBOTD F JENIA
FT HUACHUCA AZ 85613-5300

1 US ARMY NATICK RDEC
ACTING TECHNICAL DIR
ATTNSSCNCT P BRANDLER
NATICK MA 01760-5002

1 US ARMY RESEARCH OFC
4300 S MIAMI BLVD
RESEARCH TRIANGLE PARK NC 27709

1 US ARMY SIMULATION TRAIN &
INSTRMNTN CMD

ATTN JSTAHL
12350 RESEARCH PARKWAY
ORLANDO FL 32826-3726

1 US ARMY TANK-AUTOMOTIVE &
ARMAMENTS CMD

ATTN AMSTA AR TD M FISETTE
BLDG1
PICATINNY ARSENAL NJ 07806-5000

1 US ARMY TANK-AUTOMOTIVE CMD
RD&E CTR
ATTN AMSTA TA J CHAPIN
WARREN MI 48397-5000

1 US ARMY TRAINING & DOCTRINE CMD
BATTLE LAB INTEGRATION & TECH DIR
ATTNATCDB J A KLEVECZ
FT MONROE VA 23651-5850

1 NAV SURFACE WARFARE CTR
ATTN CODE B07 J PENNELLA
17320 DAHLGREN RD BLDG 1470 RM 1101
DAHLGREN VA 22448-5100

169

NO. OF
COPIES

1

ORGANIZATION

DARPA
ATTN B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-

NO. OF
COPIES

1

1714

UNIV OF TEXAS
ARL ELECTROMAG GROUP
CAMPUS MAIL CODE F0250
ATTN A TUCKER
AUSTIN TX 78713-8029

HICKS & ASSOCIATES, INC.
ATTN G SINGLEY III
1710 GOODRICH DR STE 1300
MCLEAN VA 22102

ARL ELECTROMAG GROUP
CAMPUS MAIL CODE F0250 A TUCKER
UNIVERSITY OF TEXAS
AUSTIN TX 78712

SPECIAL ASST TO THE WING CDR
50SW/CCX CAPT P H BERNSTEIN
300 O'MALLEY AVE STE 20
FALCON AFB CO 80912-3020

HQ AFWA/DNX
106 PEACEKEEPER DR STE 2N3
OFFUTT AFB NE 68113-4039

APPLIED RESEARCH ASSOCIATES INC
ATTN MR. ROBERT SHANKLE
219 W BEL AIR AVENUE SUITE 5
ABERDEEN MD 21001

CDR US ARMY AVIATION RDEC
CHIEF CREW ST R7D (DR N BÜCHER)
MS 243-4
AMES RESEARCH CENTER
MOFFETT FIELD CA 94035

ITT INDUSTRIES
ATTN CHARLES WOODHOUSE
2560 HUNTINGTON AVE
ALEXANDRIA VA 22303

ITT INDUSTRIES
ATTN MICHAEL O'CONNOR
600 BLVD SOUTH SUITE 208
HUNTSVILLE AL 35802

RAYTHEON SYSTEMS COMPANY
ATTN JOHN D POWERS
6620 CHASE OAKS BLVD MS 8518
PLANO TX 75023

ORGANIZATION

OPTOMETRICS INCORPORATED
ATTN FREDERICK G SMITH
3115 PROFESSIONAL DRIVE
ANN ARBOR MI 48104-5131

DIR US ARL
ATTN AMSRL SL EP (G MAREZ)
WHITE SANDS MISSILE RANGE NM

88002

DIR US ARMY TRAC
ATTN ATRC WE (LOUNELL SOUTHARD)
WHITE SANDS MISSILE RANGE NM

88002

DIR US ARMY TRAC
ATTN ATRCWEC JOE AGUILAR

CARROL DENNY DAVID DURDA
PETER SHUGART

WHITE SANDS MISSILE RANGE NM
88002

CDR TARDEC
ATTN AMSTA TR D M/S 207

FSCS
ROGER HALLE GEORGE SIMON

WARREN MI 48397-5000

CDR ARDEC
ATTN AMSTA AR FSS JULIE CHU

DON MILLER BILL DAVIS
PICATINNY ARSENAL NJ 07806-5000

DEFENSE THREAT REDUCTION AGENCY
ATTN SWE (WALTER ZIMMERS)
6801 TELEGRAPH ROAD
ALEXANDRIA VA 22310

ABERDEEN PROVING GROUND

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CI LP (TECH LIB)
BLDG305 APGAA

US ARMY EDGEWOOD RDEC
ATTNSCBRDTD J VERVIER
APG MD 21010-5423

170

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

8 DIRAMSAA
ATTN PDEITZ M BURROUGHS

B BRADLEY J BREWER
D HODGE D JOHNSON
R NORMAN A WONG

1 PRIN DPTY FOR ACQTN HDQ
US ARMY MATL CMND
ATTN AMCDCGA D ADAMS
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

■» 26 US ARMY RESEARCH LABORATORY
ATTN AMSRLWMBF J LACETERA

1 DPTY CG FOR RDE HDQ
US ARMY MATL CMND

AMSRL WM BF G SAUERBORN (25 CYS) ATTN AMCRD BG BEAUCHAMP
«

4

BLDG 120

US ARMY RESEARCH LABORATORY

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

ATTN AMSRL SL BV R MEYER 1 COMMANDER
AMSRL SLBV J ANDERSON US ARMY MATERIEL COMMAND
AMSRL SLBV C KENNEDY ATTN AMCDEAQ
AMSRL SLBV M MUUSS 5001 EISENHOWER AVENUE

BLDG 238 ALEXANDRIA VA 22333-0001

4 US ARMY RESEARCH LABORATORY
ATTN AMSRL M SMITH

AMSRL G MOSS
BLDG 321

2 DIR USARL
AMSRL WMW DR INGO MAY
LARRY JOHNSON
BLDG 4600

1 DIR USARL
AMSRL WMB A. HORST
BLDG 4600

1 DIR USARL
AMSRL-SL-B J SMITH
BLDG 328

ABSTRACT ONLY

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TP TECH PUB BR
2800 POWDER MILL RD
ADELPHIMD 20783-1197

COMMANDER
US ARMY MATERIEL COMMAND
ATTN AMCRDATF
5001 EISENHOWER AVENUE
ALEXANDRIA VA 22333-0001

PRIN DPTY FOR TECH GY HDQ
US ARMY MATL CMND
ATTN AMCDCG T
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

171

INTENTIONALLY LEFT BLANK

172

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 1999
3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

The Distributed Interactive Simulation (DIS) Lethality Communication Server
Volume II: User and Programmer's Manual

6. AUTHOR(S)

Sauerborn, G.C. (ARL)

5. FUNDING NUMBERS

PR: 1L162618AH80

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21010-5066

8. PERFORMING ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21010-5066

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARL-TR-1775

11.SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Volume 1 presented the distributed interactive simulation lethality communication server, a client-server approach to handling
battle simulation lethality. Although Volume 1 explained the approach and its benefits and limitations, it presented no
information about how to set up, run, or modify the server. In this volume, these vital (yet sometimes tedious) details are
provided.

14. SUBJECT TERMS

client server
degraded states

DIS
distributed simulation

lethality
vulnerability

15. NUMBER OF PAGES
183

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 173
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

